Journal of Materials Science

, Volume 29, Issue 11, pp 2963–2967 | Cite as

Pest disintegration of thin MoSi2 films by oxidation at 500° C

  • T. C. Chou
  • T. G. Nieh


Thin molybdenum disilicide (MoSi2) films have been produced by magnetron sputter deposition, and subjected to oxidation tests for the study of “MoSi2 pest”-a phenomenon showing disintegration of a solid piece of MoSi2 into powdery products. The as-prepared films were of an amorphous structure. Oxidation of the films in air at 500° C led first to cracking of the films, and then the cracked pieces eventually evolved into disintegrated powders with a yellowish appearance. Secondary electron microscopy and Auger electron spectroscopy revealed that the reaction products consisted of MoO3 whiskers (platelets), Si-Mo-O fibres, SiO2 clusters, and some residual MoSi2. The disintegration of MoSi2 films appeared to be independent of their crystal structure; a similar phenomenon was also observed in crystallized films, with a metastable hexagonal structure, oxidized under the same conditions. The disintegration of the MoSi2 films is compared to and correlated with the “pest reaction” of bulk MoSi2.


Auger MoO3 Auger Electron Spectroscopy Electron Spectroscopy Oxidation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Von E. Fitzer, in “Plansee Proceedings, 2nd Seminar” (Reutte/Tyrol, 1956) pp. 56–79.Google Scholar
  2. 2.
    C. D. Wirkus andD. R. Wilder,J. Am. Ceram. Soc. 49 (1966) 173.Google Scholar
  3. 3.
    H. H. Hausner (ed.), “Coatings of High Temperature Materials” (Plenum, New York, 1966).Google Scholar
  4. 4.
    G. V. Samsonov, “Silicides and Their Uses in Engineering” (Akad. Nauk. Ukr. SSR, Kiev, 1959).Google Scholar
  5. 5.
    A. Guivarc'h, P. Auvray, L. Le Cun, J. P. Boulet, G. Pelous andA. Martinez,J. Appl. Phys. 49 (1978) 233.Google Scholar
  6. 6.
    A. Perio, J. Torres, G. Bomchil, F. Arnaud D'Avitaya andR. Pantel,Appl. Phys. Lett. 45 (1984) 857.Google Scholar
  7. 7.
    S. P. Murarka, “Silicides for VLSI Applications” (Academic Press, New York, 1983).Google Scholar
  8. 8.
    F. M. D'Heurle, C. S. Petersson andM. Y. Tsai,J. Appl. Phys. 51 (1980) 5976.Google Scholar
  9. 9.
    J. J. Rausch, ARF 2981-4, Armour Research Foundation, 31 August 1961, NSA 15-31171.Google Scholar
  10. 10.
    E. A. Aitken, in “Intermetallic Compounds”, edited by J. H. Westbrook (Wiley, New York, 1967) pp. 491–516.Google Scholar
  11. 11.
    P. J. Meschter,Met. Trans. 23A (1992) 1763.Google Scholar
  12. 12.
    T. C. Chou andT. G. Nieh,Scripta Metall. Mater. 26 (1992) 1637.Google Scholar
  13. 13.
    Idem, ibid. 27 (1992) 19.Google Scholar
  14. 14.
    Idem, J. Mater. Res. 8 (1993) 214.Google Scholar
  15. 15.
    J. H. Westbrook andD. L. Wood,J. Nucl. Mater. 12 (1964) 208.Google Scholar
  16. 16.
    C. H. Ho, S. Prakash, H. J. Doerr, C. V. Deshpandey andR. F. Bunshah,Thin Solid Films 207 (1992) 294.Google Scholar
  17. 17.
    A. L. Pranatis, C. I. Whitman andC. D. Dickinson, “Summary of the 5th Meeting of the Refractory Composites Working Group”, Defense Metals Information Center Report 167, March 1962.Google Scholar
  18. 18.
    R. A. Perkins, private communication (1992).Google Scholar
  19. 19.
    T. C. Chou andT. G. Nieh,Thin Solid Films 214 (1992) 48.Google Scholar
  20. 20.
    A. B. Gokhale andG. J. Abbaaschian, in “Binary Alloy Phase Diagrams”, Vol. 1, edited by T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker (ASM, Metals Park, OH, 1986) p. 1632.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. C. Chou
    • 1
  • T. G. Nieh
    • 2
  1. 1.Lockheed Research and Development DivisionPalo AltoUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations