Theoretica chimica acta

, Volume 84, Issue 1–2, pp 95–103 | Cite as

Internally contracted multiconfiguration-reference configuration interaction calculations for excited states

  • Peter J. Knowles
  • Hans-Joachim Werner


The calculation of electronically excited states with the internally contracted multiconfiguration-reference configuration interaction (CMRCI) method is discussed. A straightforward method, in which contracted functions for all states are included in the basis, is shown to be very accurate and stable even in cases of narrow avoided crossings. However, the expense strongly increases with the number of states. A new method is proposed, which employs different contracted basis sets for each state, and in which eigensolutions of the Hamiltonian are found using an approximate projection operator technique. The computational effort for this method scales only linearly with the number of states. The two methods are compared for various applications.

Key words

Quantum chemistry Configuration interaction Excited states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33Google Scholar
  2. 2.
    Buenker RJ, Peyerimhoff SD, Butscher W (1978) Mol Phys 35:771Google Scholar
  3. 3.
    Siegbahn PEM (1980) Int J Quantum Chem 18:1229Google Scholar
  4. 4.
    Liu B, Yoshimine M (1981) J Chem Phys 74:612Google Scholar
  5. 5.
    Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quantum Chem Symp 15:91Google Scholar
  6. 6.
    Saxe P, Fox DJ, Schaefer III HF, Handy NC (1982) J Chem Phys 77:5584Google Scholar
  7. 7.
    Saunders VR, van Lenthe JH (1983) Mol Phys 48:923Google Scholar
  8. 8.
    Werner H-J, Reinsch EA (1982) J Chem Phys 76:3144Google Scholar
  9. 9.
    Werner H-J, Reinsch EA (1984) in: Dykstra CE (ed) Advanced theories and computational approaches to the electronic structure of molecules, Reidel, DordrechtGoogle Scholar
  10. 10.
    Werner H-J (1987) Adv Chem Phys LXIX:1Google Scholar
  11. 11.
    Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803Google Scholar
  12. 12.
    Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514Google Scholar
  13. 13.
    Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175Google Scholar
  14. 14.
    Werner H-J, Knowles PJ (1991) J Chem Phys 94:1264Google Scholar
  15. 15.
    Knowles PJ, Stark K, Werner H-J (1991) Chem Phys Lett 185:555Google Scholar
  16. 16.
    MacDonald JKL (1933) Phys Rev 43:830; Hylleraas EA, Undheim B (1930) Z Phys 65:759Google Scholar
  17. 17.
    Malmqvist PA, Roos BO (1989) Chem Phys Lett 155:189Google Scholar
  18. 18.
    Glenewinkel-Meyer Th, Müller B, Ottinger C, Rosmus R, Knowles PJ, Werner H-J (1991) J Chem Phys 95:5133Google Scholar
  19. 19.
    Werner H-J, Spielfieldel A, Feautrier N, Chambaud G, Rosmus P (1990) Chem Phys Lett 175:203Google Scholar
  20. 20.
    Dunning TH (1989) J Chem Phys 90:1007Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Peter J. Knowles
    • 1
  • Hans-Joachim Werner
    • 2
  1. 1.School of Chemistry and Molecular SciencesUniversity of SussexFalmer, BrightonUK
  2. 2.Fakultät für ChemieUniversität BielefeldBielefeldFederal Republic of Germany

Personalised recommendations