Journal of Materials Science

, Volume 21, Issue 3, pp 985–988

Preparation and photovoltaic properties of anodically grown Ag2O films

  • E. Tselepis
  • E. Fortin
Article

Abstract

The semiconducting and photovoltaic properties of p-type Ag2O films grown anodically on silver electrodes were studied, in view of possible applications in solar energy conversion. Films were grown in different alkaline solutions; the best results were obtained for 0.02M Ag2SO4 + 0.17M NH4OH + 5.7 × 10−3M Ba(OH)2 saturated with Ag2O powder, stirred mechanically at room temperature. Film thicknesses of up to 10μm were thus obtained for the first time in anodically grown Ag2O. Photovoltaic spectra taken at 300 K give a bandgap ofEg = 1.42 ± 0.04 eV. Evaporated gold on Ag2O appears to be ohmic while aluminium and platinum are rectifying. The barrier height of Ag/Ag2O is 0.90 ± 0.02 eV, that of Al/Ag2O is 0.93 ± 0.02 eV, and that of platinum 0.94 ± 0.02 eV. The best cells give an open-circuit voltage,Voc, of over 150 mV, and a short circuit current,Isc = 100μA cm−2 under 50 mW cm−2 illumination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. L. Rollins andF. L. Weichman,Phys. Status. Solidi 15 (1966) 233.Google Scholar
  2. 2.
    F. I. Kreingold andB. S. Kulinkin,Sov. Phys. Semicond. 4 (1971) 2022.Google Scholar
  3. 3.
    E. Fortin andF. L. Weichman,Phys. Status Solidi 5 (1964) 515.Google Scholar
  4. 4.
    E. F. Gross andF. I. Kreingold,Opt. i Spectroskopia 10 (1961) 417.Google Scholar
  5. 5.
    E. Fortin andD. Masson,Solid State Electron. 25 (1982) 281.Google Scholar
  6. 6.
    E. Fortin andW. M. Sears,Can. J. Phys. 60 (1982) 901.Google Scholar
  7. 7.
    J. C. Baillard, in “Comprehensive Inorganic Chemistry” (Pergamon Press, New York, 1973) pp. 97–8.Google Scholar
  8. 8.
    B. V. Tilak, R. S. Perkins, H. A. Kozlowska andB. E. Conway,Electrochim. Acta 17 (1972) 1447.Google Scholar
  9. 9.
    T. P. Dirske,J. Electrochem. Soc. 106 (1959) 453.Google Scholar
  10. 10.
    C. P. Wales andJ. Burbank,ibid. 106 (1959) 885.Google Scholar
  11. 11.
    T. P. Dirske,ibid. 106 (1959) 920.Google Scholar
  12. 12.
    T. P. Dirske, D. Dewit andR. Shoemaker,ibid. 114 (1967) 1196.Google Scholar
  13. 13.
    W. J. Hamer andD. N. Graig,ibid. 104 (1957) 206.Google Scholar
  14. 14.
    B. D. Cahan, J. B. Ockerman, R. F. Amlic andP. Ruetschi,ibid. 107 (1960) 725.Google Scholar
  15. 15.
    M. J. Dignam, H. M. Barrett andG. D. Nagy,Can. J. Chem. 47 (1969) 4253.Google Scholar
  16. 16.
    D. B. Gibbs, B. Rao, R. A. Griffin andM. J. Dignam,J. Electrochem. Soc. 122 (1975) 1167.Google Scholar
  17. 17.
    M. Fleischmann, D. J. Lax andH. R. Thirsk,Trans. Faraday Soc. 64 (1968) 3128.Google Scholar
  18. 18.
    Marcel Pourbaix, in “Atlas of Electrochemical Equilibria in Aqueous Solutions” (Pergamon Press, Oxford, and Cebelcor, Brussels, 1966) p. 396.Google Scholar
  19. 19.
    G. W. D. Briggs, M. Fleischmann andD. J. Lax,Trans. Faraday Soc. 64 (1968) 3120.Google Scholar
  20. 20.
    V. I. Veselovsky, T. I. Borisova, A. A. Jakovleva andS. O. Izidinov,Electrochim. Acta 10 (1965) 325.Google Scholar
  21. 21.
    S. Yoshizawa andZ. Takehara,J. Electrochem. Soc. Jpn. 31 (1963) 91.Google Scholar
  22. 22.
    T. S. Moss, in “Photoconductivity in the Elements” (Butterworth, London, 1952) pp. 31–4.Google Scholar
  23. 23.
    L. C. Olsen, R. C. Bohara andM. W. Urie,Appl. Phys. Lett. 34 (1979) 47.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • E. Tselepis
    • 1
  • E. Fortin
    • 1
  1. 1.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations