Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plasma surface modification of advanced organic fibres

Part II Effects on the mechanical, fracture and ballistic properties of extended-chain polyethylene/epoxy composites

  • 129 Accesses

  • 38 Citations


The interlaminar shear strength, interlaminar fracture energy, flexural strength and modulus of extended-chain polyethylene/epoxy composites are improved substantially when the fibres are pretreated in an ammonia plasma to introduce amine groups on to the fibre surface. These property changes are examined in terms of the microscopic properties of the fibre/matrix interface. Fracture surface micrographs show clean interfacial tensile and shear fracture in composites made from untreated fibres, indicative of a weak interfacial bond. In contrast, fracture surfaces of composites made from ammonia plasma-treated fibres exhibit fibre fibrillation and internal shear failure as well as matrix cracking, suggesting stronger fibre/matrix bonding, in accord with the observed increase in interlaminar fracture energy and shear strength. Failure of flexural test specimens occurs exclusively in compression, and the enhanced flexural strength and modulus of composites containing plasma-treated fibres result mainly from reduced compressive fibre buckling and debonding due to stronger interfacial bonding. Fibre treatment by ammonia plasma also causes an appreciable loss in the transverse ballistic impact properties of the composite, in accord with a higher fibre/matrix interfacial bond strength.

This is a preview of subscription content, log in to check access.


  1. 1.

    G. A. George andH. A. Willis,High Perf. Polym. 1 (1990) 335.

  2. 2.

    N. H. Ladizesky andI. M. Ward,Compos. Sci. Technol. 26 (1986) 129.

  3. 3.

    S. L. Kaplan, P. W. Rose, H. X. Nguyen andH. W. Chang, in “Proceedings of the 33rd International SAMPE Symposium”, Anaheim CA, 7–10 March 1988, edited by G. Carrillo, E. D. Newell, W. D. Brown and P. Phelan (SAMPE, Covina, 1988) p. 551.

  4. 4.

    H. X. Nguyen, G. Riahi, G. Wood andA. Poursartip,ibid.in p. 1721.

  5. 5.

    M. Nardin andI. M. Ward,Mater. Sci, Technol. 3 (1987) 814.

  6. 6.

    H. X. Nguyen, G. C. Weedon andH. W. Chang, in “Proceedings of the 34th International SAMPE Symposium”, Reno, NV, 8–11 May 1989, edited by G. A. Zakrzewski, D. Mazenko, S. T. Peters and C. D. Dean (SAMPE, Covina, 1989) p. 1603.

  7. 7.

    J. R. Brown, P. J. C. Chappell andZ. Mathys,J. Mater. Sci. 26 (1991) 4172.

  8. 8.

    R. E. Allred, PhD thesis, Massachusetts Institute of Technology (1983) pp. 39, 130, 131.

  9. 9.

    T. F. Mika, in “Epoxy Resins: Chemistry and Technology”, edited by C. A. May and Y. Tanaka (Marcel Dekker, New York, 1973) p. 257.

  10. 10.

    ASTM D 2344-76, “Apparent Interlaminar Shear Strength of Parallel Fiber Composites by Short-Beam Method” (American Society for Testing and Materials, Philadelphia, PA, 1976).

  11. 11.

    A. J. Smiley andR. B. Pipes,J. Compos. Mater. 21 (1987) 670.

  12. 12.

    J. M. Whitney, C. E. Browning andW. Hoogsteden,J. Rein. Plastics Compos. 1 (1982) 297.

  13. 13.

    ASTM D 790-86, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials” (American Society for Testing and Materials, Philadelphia, PA, 1986).

  14. 14.

    J. R. Brown, P. J. C. Chappell, G. T. Egglestone andE. P. Gellert,J. Phys. E Sci. Instrum. 22 (1989) 771.

  15. 15.

    MIL-P-46593A (ORD), Military Specification, “Projectile, Calibres 0.22, 0.30, 0.50 and 20 mm Fragment-Simulating”, October 1962.

  16. 16.

    MIL-STD-662E, Military Standard, “V 50 Ballistic Test for Armor”, January 1987.

  17. 17.

    A. L. Alesi, J. R. Brown andW. E. Haskell III, in “Aramid Composite Structural Armor Materials for Ground Combat Vehicles”, U.S. Army Materials Technology Laboratory Report MTL TR 89-102 (1989).

  18. 18.

    D. R. Hartman, in “Proceedings of the 41st Annual Conference, Reinforced Plastics/Composites Institute”, 27–31 January dy1986 (The Society of the Plastics Industry, New York, 1986) p. 16-D/1.

Download references

Author information

Correspondence to J. R. Brown.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, J.R., Chappell, P.J.C. & Mathys, Z. Plasma surface modification of advanced organic fibres. J Mater Sci 27, 3167–3172 (1992). https://doi.org/10.1007/BF01116006

Download citation


  • Shear Strength
  • Flexural Strength
  • Shear Fracture
  • Fibre Treatment
  • Ammonia Plasma