Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interfacial debonding and fibre pull-out stresses

Part I Critical comparison of existing theories with experiments

Abstract

Two current theories [11, 17] of interfacial debonding and fibre pull-out, which have been developed on the basis of fracture mechanics and shear strength criteria, respectively, are critically compared with experimental results of several composite systems. From the plots of partial debond stress, σ d p , as a function of debond length, three different cases of the interfacial debond process can be identified, i.e. totally unstable, partially stable and totally stable. The stability of the debond process is governed not only by elastic constants, relative volume of fibre and matrix but more importantly by the nature of bonding at the interface and embedded fibre length,L. It is found that for the epoxy-based matrix composite systems, Gaoet al.'s model [17] predicts the trend of maximum debond stress, σ d * , very well for longL, but it always overestimates σ d * for very shortL. In contrast, Hsueh's model [11] has the capability to predict σ d * for shortL, but it often needs significant adjustment to the bond shear strength for a better fit of the experimental results for longL. For a ceramic-based matrix composite, σ d * predicted by the two models agree exceptionally well with experiment over almost the whole range ofL, a reflection that the assumed stable debond process in theory is actually achieved in practice. With respect to the initial frictional pull-out stress, σf, the agreement between the two theories and experiments is excellent for all range ofL and all composite systems, suggesting that the solutions for σf proposed by the two models are essentially identical. Although Gaoet al.'s model has the advantage to determine accurately the important interfacial properties such as residual clamping stress,q o, and coefficient of friction, μ, it needs some modifications if accurate predictions of σ d * are sought for very shortL. These include varying interfacial fracture toughness,G ic with debond crack growth, unstable debonding for very shortL and inclusion of shear deformation in the matrix for the evaluation ofG ic and fibre stress distribution. Hsueh's model may also be improved to obtain a better solution by including the effect of matrix axial stress existing at the debonded region on the frictionless debond stress, σo.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. K. Kim andY. W. Mai,Comp. Sci. Tech. 41 (1991) 333.

  2. 2.

    A. Kelly andW. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.

  3. 3.

    A. Kelly,Proc. R. Soc. Lond. A282 (1964) 63.

  4. 4.

    B. Miller, P. Muri andL. Rebenfeld,Comp. Sci. Tech. 28 (1987) 17.

  5. 5.

    M. K. Tse,SAMPE J. 21 (1985) 11.

  6. 6.

    H. L. Cox,Brit. J. Appl. Phys. 3 (1952) 72.

  7. 7.

    L. B. Greszczuk, “Interfaces in Composites”, ASTM STP 452 (American Society for Testing and Materials, Philadelphia, 1969) p. 42.

  8. 8.

    A. Takaku andR. G. C. Arridge,J. Phys. D Appl. Phys. 6 (1973) 2038.

  9. 9.

    P. Lawrence,J. Mater. Sci. 7 (1972) 1.

  10. 10.

    V. Laws, P. Lawrence andR. W. Nurse,J. Phys. D Appl. Phys. 6 (1973) 523.

  11. 11.

    C. H. Hsueh,Mater. Sci. Engng A123 (1990) 1.

  12. 12.

    Idem, ibid. A125 (1990) 67.

  13. 13.

    C. Gurney andJ. Hunt,Proc. R. Soc. Lond. A 299 (1967) 508.

  14. 14.

    J. O. Outwater andM. C. Murphy, in “Proceedings of the 24th Conference on SPI” (1969) Paper 11C.

  15. 15.

    H. Stang andS. P. Shah,J. Mater. Sci. 21 (1986) 953.

  16. 16.

    J. K. Wells andP. W. R. Beaumont,ibid. 20 (1985) 1275.

  17. 17.

    Y. C. Gao, Y. W. Mai andB. Cotterell,J. Appl. Math. Phys. (ZAMP) 39 (1988) 550.

  18. 18.

    C. Atkinson, J. Avila, E. Betz andR. E. Smelser,J. Mech. Phys. Solids 30 (1982) 97.

  19. 19.

    C. K. Y. Leung andV. C. Li,Composites 21 (1990) 305.

  20. 20.

    Idem,J. Mater. Sci. (1992) 305 in press.

  21. 21.

    C. H. Hsueh,J. Mater Sci. Lett. 7 (1988) 497.

  22. 22.

    E. P. Buttler, E. R. Fuller Jr andH. M. Chan,Mater. Res. Soc. Symp. Proc. 170 (1990) 17.

  23. 23.

    J. K. Kim, C. Baillie andY. W. Mai,Scripta Metall. Mater. 25 (1991) 315.

  24. 24.

    V. M. Karbhari andD. J. Wilkins,ibid. 24 (1990) 1197.

  25. 25.

    J. D. Bright, S. Danchaivijit andD. K. Shetty,J. Amer. Ceram. Soc. 74 (1991) 115.

  26. 26.

    C. Cazeneuve, J. E. Castle andJ. F. Watts,J. Mater. Sci. 25 (1990) 1902.

  27. 27.

    P. Denison andF. R. Jones,ibid. 23 (1988) 2153.

  28. 28.

    J. G. Williams, M. E. Donnellan, M. R. James andW. L. Morris,Mater. Sci. Engng A126 (1990) 305.

  29. 29.

    T. C. Tsai, A. M. Arocho andL. M. Gause,ibid. A126 (1990) 294.

  30. 30.

    M. R. Piggott,Polym. Comp. 8 (1987) 291.

  31. 31.

    G. C. Papanicolaou, G. J. Messinis andS. S. Karakatsanidis,J. Mater. Sci. 24 (1989) 395.

  32. 32.

    P. Bartos,ibid. 15 (1980) 3122.

  33. 33.

    M. R. Piggott,Comp. Sci. Tech. 30 (1987) 295.

  34. 34.

    C. K. Y. Leung andV. C. Li,J. Mater. Sci. Lett. 9 (1991) 1140.

  35. 35.

    L-M. Zhou, J-K Kim andY-W Mai,J. Mater. Sci. (1992)27, 3155.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Baillie, C. & Mai, Y. Interfacial debonding and fibre pull-out stresses. J Mater Sci 27, 3143–3154 (1992). https://doi.org/10.1007/BF01116004

Download citation

Keywords

  • Shear Strength
  • Bond Shear Strength
  • Debond Length
  • Interfacial Fracture Toughness
  • Debond Process