Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A structural basis of light energy and electron transfer in biology

  • 26 Accesses

  • 1 Citations


Aspects of intramolecular light energy and electron transfer will be discussed for three protein cofactor complexes, whose three-dimensional structures have been elucidated by x-ray crystallography: Components of light harvesting cyanobacterial phycobilisomes, the purple bacterial reaction centre, and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allow specific correlations between structure and function and general conclusions about light energy and electron transfer in biological materials to be made.

This is a preview of subscription content, log in to check access.



phycobilisomes, light harvesting organelles peripheral to the thylakoid membrane in cyanobacteria, which carry out oxygenic photosynthesis and have photosystems I and II


phycoerythrin, phycoerythrocyanin, phycocyanin, allophycocyanin, biliprotein components in PBS with covalently attached tetrapyrrole (bilin) pigments


photosynthetic reaction centers in chloroplasts and cyanobacteria


retinol binding protein


bilin (biliverdin IXγ) binding protein inPieris brassicae

Rps. viridis :

bacteriochlorophyll-b containing purple bacterium carrying out anoxygenic photosynthesis


reaction centre

C, H, L, M:

the four subunits of the reaction centre fromRps. viridis: the cytochrome c subunit (C), with 4 haems displaying two redox potentials (c553, c558) is located on the periplasmic side of the membrane

the L- and M-:

subunits are integrated in the membrane and their polypeptide chains span the membrane with 5 α-helices each

labelled A, B, C, D, E:

they bind the bacteriochlorophyll-b (BChl-b or BC), bacteriopheophytin-b (BPh-b or BP), menaquinone-9 (QA), ubiquinone-9 (UQ, QB) and Fe2+ cofactors

the subscriptsP,A,M,L :

indicate pair, accessory, M-, L-subunit association, respectively

the H-subunit:

is located on the cytoplasmic side and its N-terminal α-helical segment (H) spans the membrane

P680, P960:

primary electron donors in PS II and the RC ofRps. viridis, respectively, indicating the long wavelength absorption maxima

P*, D* :

electronically excited states of P and D LHC, light harvesting complexes

LHa,b :

light harvesting protein pigment complexes in BChl-a,b containing bacteria




Soretbands of Chl and BChl


plastocyanin, electron carrier in the photosynthetic apparatus, of plants


laccase, oxidase in plants and fungi


ascorbate oxidase, oxidase in plants


ceruloplasmin, oxidase in mammalian plasma


  1. Allen, J. P. et al. (1986)Proc. Natl. Acad. Sci. USA 83:8589–8593.

  2. Allen, J. P. et al. (1987)Proc. Natl. Acad. Sci. USA 84:6162–6166.

  3. Arnold, W. and Clayton, R. D. (1960)Proc. Natl. Acad. Sci. USA 46:769–776.

  4. Babcock, G. T. (1987)Oxygen-evolving Process in Photosynthesis (J. Amesz, ed.) Elsevier Science Pub.

  5. Barber, J. (1987)Trends in Biochem. Sci. 12:321–326.

  6. Barber, J. (1988)Nature 333:114.

  7. Barltrop, J. A. and Coyle, J. D. (1978)Principles of Photochemistry John Wiley and Sons, Chichester.

  8. Berstein, F. C. et al. (1977)J. Mol. Biol. 112, 535–542.

  9. Bennett, W. S. and Huber, R. (1984)CRC Critical Reviews in Biochemistry 15:291–384.

  10. Blair, D. F. et al. (1985)J. Amer. Chem. Soc. 10:5755–5766.

  11. Bode, W. et al. (1986)EMBO J. 5:2453–2458.

  12. Bolton, J. R. (1978) In:The Photosynthetic Bacteria, (R. K. Clayton and W. R. Sistrom, eds), Plenum Press, New York and London, pp. 419–442.

  13. Boltzmann, L. (1886) Der zweite Hauptsatz der mechanischen Wärmetheorie (Essay in Populäre Schriften) L. Boltzmann-Gesamtausgabe Bd. 7 (1919) Akad. Druck-und Verlagsanstalt Vieweg, Wiesbaden, pp. 25–46 (English translation from Arnon, D. L. (1961) in Light and Life (W. D. McElroy, B. Glass, eds.) The Johns Hopkins Press, Baltimore, pp. 489–569.

  14. Breton, J. (1985)Biochim. Biophys. Acta 810:235–245.

  15. Breton, J., Farkas, D. L. and Parson, W. W. (1985)Biochim. Biophys. Acta 808, 421–427.

  16. Breton, J. et al. (1986)Proc. Natl. Acad. Sci. USA 83, 5121–5125.

  17. Bricogne, G. (1976)Acta Crystallogr. A32:832–847.

  18. Bryant, D. A. et al. (1979)Arch. Microbiol. 123:113–127.

  19. Burkert, U. and Allinger, N. L. (1982)Molecular Mechanics. American Chemical Society.

  20. Calvin, M. and Bassham, J. A. (1962) In:The Photosynthesis of Carbon Compounds, pp. 1–127. Benjamin, New York.

  21. Carithers, R. P. and Parson, W. W. (1975)Biochim. Biophys. Acta 387:194–211.

  22. Case, G. D., Parson, W. W. and Thornber, J. P. (1970)Biochim. Biophys. Acta 223:122–128.

  23. Chang, C.-H. et al. (1986)FEBS Lett. 205:82–86.

  24. Chothia, C. (1984)Ann. Rev. Biochem. 53:537–572.

  25. Cogdell, R. J. and Crofts, A. R. (1972)FEBS Lett. 27:176–178.

  26. Cohen-Bazire, G. and Briant, D. A. (1982) In:The Biology of Cyanobacteria (Carr, N. G. & Whitton, B. eds.) Blackwell, London pp. 143–189.

  27. Crother and Blow, D. M. (1967)Acta Cryst. 23:544–548.

  28. Cramer, W. A. and Crofts, A. R. (1982) Electron and Proton Transport. In:Photosynthesis: Energy Conversion by Plants and Bacteria Vol 1 Academic Press Inc. pp. 387.

  29. Dawson, C. R. (1966) In:The Biochemistry of Copper (Peisach, J., Aison, P. and Blumberg, W. E., eds.) Academic Press, New York pp. 305–337.

  30. Debus, R. J., Feher, G. and Okamura, M. Y. (1986)Biochemistry 25:2276–2287.

  31. Deisenhofer, J., Huber, R. and Michel, H. (1986)Nachr. Chem. Tech. Lab. 34:416–422.

  32. Deisenhofer, J. and Steigemann, W. (1975)Acta Cryst. B31:238–280.

  33. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H., (1984)J. Mol. Biol. 180:385–398.

  34. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H., (1985)Nature 318:618–624.

  35. Deisenhofer, J., Michel, H. and Huber, R. (1985a)Trends Biochem. Sci. 10:243–248.

  36. Deisenhofer, J., Huber, R. and Michel, H. (1989) In:Prediction of Protein Structure and the Principles of Protein Conformation (G. D. Fasman, ed.) Plenum Pub. Corp., New York, (in press).

  37. De Vault, D. and Chance, B. (1966)Biophys. J. 6:825–847.

  38. Drews, G. (1985)Microbiol. Rev. 49:59–70.

  39. Duerring, M. (1988) Thesis, Technical University, München.

  40. Duerring, M., Bode, W., Huber, R., Ruembeli, R. and Zuber, H. (1989)J. Mol. Biol. (in press).

  41. Duerring, M., Huber, R. and Bode, W. (1988)FEBS Letters,236:167–170.

  42. Dutton, P. L. and Prince, R. C. (1978) In:The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York and London, 525–565.

  43. Eberson, L. (1982)Adv. Phys. Org. Chem. 18:79–185.

  44. Engelman, D. M., Steitz, T. A. and Goldman, A. (1986)Ann. Rev. Biophys. Chem. 15:321–353.

  45. Farver, O., Pecht, I. (1984) In:Copper Proteins and Copper Enzymes (R. Lontie, ed.) CRC Press, Inc. Boca Raton, Florida,1:183–214.

  46. Fischer, E. (1907)J. Chem. Soc. 91:1749–1765.

  47. Fleming, G. R., Marti, J. L. and Breton, J. (1988)Nature 333:190–192.

  48. Förster, T. (1948)Ann. Physik 2:55–75.

  49. Förster, T. (1967) In:Comprehensive Biochemistry (M. Florkin, E. H. Stotz, eds.), Vol22 Elsevier, Amsterdam pp. 61–80.

  50. Frank, G., Sidler, W., Widmer, H. and Zuber, H. (1978)Hoppe-Seyler's Z. Physiol. Chem. 359:1491–1507.

  51. Frommherz, P. and Reinbold, G. (1988)Thin solid Films 160:347–353.

  52. Gaykema, W. P. J. et al. (1984)Nature 309:23–29.

  53. Gantt, E., Lipschultz, C. A., Zilinskas, B. (1976)Biochim. Biophys. Acta 430:375–388.

  54. Germann, U. A. et al. (1988)J. Biol. Chem. 263:885–896.

  55. Gillbro, T. et al. (1985)Biochim. Biophys. Acta 808:52–65.

  56. Gerwin, B., Burstein, S. R. and Westley, J. (1974)J. Biol. Chem. 249:2005–2008.

  57. Glazer, A. N., Fang, S. and Brown, D. M. (1973)J. Biol. Chem. 16:5679–5685.

  58. Glazer, A. N. (1985) Light harvesting by phycobilisomes,Ann. Rev. Biophys. Chem. 14:47–77.

  59. Grabowski, J. and Gantt, E. (1978)Photochem. Photobiol. 28:39–45.

  60. Gray, H. B. and Solomon, E. I. (1981) In:Copper proteins (T. G. Spiro, ed.) J. Wiley & Sons, New York, pp. 1–39.

  61. Gray, H. B. and Malmström, B. G. (1983)Comments Inorg. Chem. 2:203–209.

  62. Gray, H. B. (1986)Chem. Soc. Rev. 15:17–30.

  63. Gust, D. et al. (1987)J. Amer. Chem. Soc. 109:846–856.

  64. Guss, J. M., Freeman, H. C. (1983)J. Mol. Biol. 169:521–563.

  65. Guss, J. M. et al. (1988)Science 241:806–811.

  66. Hajdu, J.et al., Trends Biochem. Sci. 13:104–109.

  67. Hains, A. (1975)Acc. Chem. Res. 8:264–272.

  68. Harrison, S. C. (1978)Nature (London) 276:368–373.

  69. Hendrickson, W. A. et al. (1988)Proteins 4:77–88.

  70. Hefferle, P. et al. (1983)Photobiochem. Photobiophys. 5:41–51.

  71. Henderson, R. and Unwin, P. N. T. (1975)Nature 257:28–32.

  72. Higuchi, Y. et al. (1984)J. Mol. Biol. 172:109–139.

  73. Hogle, J. M., Chow, M., Filman, D. J. (1985)Science 229:1358–1365.

  74. Holm, L., Saraste, M. and Wikström, M. (1987)EMBO J. 6:2819–2823.

  75. Holten, D. et al. (1978)Biochim. Biophys. Acta 501:112–126.

  76. Holzwarth, A. R. (1985) In:Antennas and Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M. E., ed.) Springer-Verlag, Berlin pp. 45–52.

  77. Holzwarth, A. R. (1986)Photochem. Photobiol. 43:707–725.

  78. Hopfield, J. J. (1974)Proc. Natl. Acad. Sci. USA 71:3640–3644.

  79. Hoppe, W. (1957)Acta Cryst. 10:750–751.

  80. Huber, R. (1965)Acta Cryst. 19:353–356.

  81. Huber, R. (1986) In;Molecular Replacement. Proceedings of the Daresbury Study Weekend (P. Machin, ed.) Daresbury Laboratory, pp. 58–61.

  82. Huber, R. et al. (1974)J. Mol. Biol. 89:70–101.

  83. Huber, R. (1984) In:Behring Institute Mitteilungen 76, (Gronski, P., Seiler, F. R., eds.) 1–14.

  84. Huber, R. et al. (1987)J. Mol. Biol. 198:499–513.

  85. Huber, R. et al. (1987a)J. Mol. Biol. 195:423–434.

  86. Huber, et al. (1987b)J. Mol. Biol. 198:499–513.

  87. Huber, R. (1988)Angew. Chem. Int. Ed. Engl. 27:79–88.

  88. Isied, S. et al. (1985)J. Am. Chem. Soc. 107:7432–7438.

  89. Jaenicke, R. (1988) In:39. Mosbacher Kolloquium (E.-L. Winnacker and R. Huber, eds), Springer-Verlag, Berlin Heidelberg.

  90. Jay, F. et al. (1984)EMBO J. 3:773–776.

  91. Jones, A. T. (1978)J. Appl. Cryst. 11:268–272.

  92. Karplus, M., McCammon, J. A. (1981)CRC Crit. Rev. Biochem. 9:293–349.

  93. Kavarnos, G. J. and Turro, N. J. (1986)Chem. Rev. 86:401–449.

  94. Kebarle, P. and Chowdhury, S. (1987)Chem. Rev. 87:513–534.

  95. Kirmaier, Ch., Holten, D. and Parson, W. W. (1985)Biochim. Biophys. Acta 810:33–48.

  96. Kirmaier, Ch., Holton, D. and Parson, W. W. (1985)Biochim. Biophys. Acta 810:49–61.

  97. Kleffel, B. et al. (1985)EMBO J. 4:1589–1592.

  98. Kleinfeld, D., Okamura, M. Y., Feher, G. (1965)Biochim. Biophys. Acta 809:291–310.

  99. Kline, A. D., Braun, W. and Wüthrich, K. (1986)J. Mol. Biol. 189:377–382.

  100. Knapp, E. W. et al., (1985)Proc. Natl. Acad. Sci. USA,82:8463–8467.

  101. Kuhn, H. (1970)J. Chem. Phys. 53:101.

  102. Ladenstein, R. (1988)J. Mol. Biol. 203:1045–1070.

  103. Levitt, M., Sharon, R. (1988)Proc. Natl. Acad. Sci. USA 85:7557–7561.

  104. Lesk, A. M. and Hardman, K. D. (1982)Science 216:539–540.

  105. Lodish, H. F. (1988)Trends Biochem. Sci. 13:332–334.

  106. Loebermann, H., Tokuoka, R., Deisenhofer, J. and Huber, R. (1984)J. Mol. Biol. 177:531–556.

  107. Lumry, R. and Eyring, H. (1954)J. Phys. Chem. US 58:110–112.

  108. Lundell, D. J., Williams, R. C. and Glazer, A. N. (1981)J. Biol. Chem. 256:3580–3592.

  109. MacColl, R. and Guard-Friar, D. (1987)Phycobiliproteins CRC Press, Inc. Boca Raton pp. 157–173.

  110. Malkin, R. and Malmström, B. G. (1970)Adv. Enzymol. 33:177–243.

  111. Malmström, B. G. (1978)New Trends Bio-inorganic Chemistry, Academic Press. pp. 59–77.

  112. Marcus, R. A. and Sutin, N. (1985)Biochim. Biophys. Acta 811:265–322.

  113. Mayo, S. L. et al. (1986)Science 233:948–952.

  114. McGoutry, J. L. et al. (1987)Biochemistry 26:8302–8312.

  115. McLendon, G. (1988)Acc. Chem. Res. 21:160–167.

  116. Messerschmidt, A. et al. (1988)J. Mol. Biol. 206:513–529.

  117. Michel, H. et al. (1985)EMBO J. 4:1667–1672.

  118. Michel, H., Epp, O., Deisenhofer, J. (1986)EMBO J. 5:2445–2451.

  119. Michel, H. et al. (1986)EMBO J. 5:1149–1158.

  120. Michel, H., Deisenhofer, J. (1988)Biochemistry 27:1–7.

  121. Michel-Beyerle, M. E. et al. (1988)Biochem. Biophys. Acta 932:52–70.

  122. Mikkelsen, K. V. and Ratner, M. A. (1987)Chem. Rev. 87:113–153.

  123. Milks, L. C. et al. (1988)EMBO J. 7:2967–2975.

  124. Mimuro, M. et al. (1986).Biochim. Biophys. Acta 848:155–166.

  125. Moore, T. A. et al. (1984)Nature 307:630–632.

  126. Mörschel, E., Koller, K.-P., Wehrmeyer, W. and Schneider, H. (1977)Cytobiologie 16:118–129.

  127. Mondovì, B. and Avigliano, L. (1984) InCopper Proteins and Copper Enzymes Vol. 3 (Lontie, L. ed.)3, CRC Press Inc., Boca Raton, Florida pp. 101–118.

  128. Netzel, T. L., Rentzepis, P. M., Tiede, D. M., Prince, R. C. and Dutton, P. L. (1977)Biochim. Biophys. Acta,460:467–479.

  129. Nies, M. and Wehrmeyer, W. (1981)Arch. Microbiol. 129:374–379.

  130. Okkawa, J., Okada, N., Shinmyo, A. and Takano, M. (1988)Proc. Natl. Acad. Sci. USA 86:1239–1243.

  131. Ollis, D. et al. (1985)Nature 313:762–766.

  132. Parson, W. W. (1974)Ann. Rev. Microbiol. 28:41–59.

  133. Parson, W. W. and Cogdell, R. J. (1975)Biochim. Biophys. Acta,416:105–149.

  134. Parson, W. W. (1978) In:The Photosynthetic Bacteria (R. K. Clayton, W. R. Sistrom, eds.) Plenum Press, New York, London, pp. 317–322.

  135. Parson, W. W., Scherz, A. and Warshel, A. (1985) Calculations of spectroscopic properties of bacterial reaction centers. In:Antennas and Reaction Centers of Photosynthetic Bacteria (M. E. Michel-Beyerle, ed.) Springer Verlag, Berlin.

  136. Pasman, P., Rob, F. and Verhoeven, J. W. (1982)J. Am. Chem. Soc. 104:5127–5133.

  137. Pflugrath, J. W. et al. (1986)J. Mol. Biol. 189:383–386.

  138. Porter, G. et al. (1978)Biochim. Biophys. Acta 501:232–245.

  139. Prince, R. C., Leigh, J. S. and Dutton, P. L. (1976)Biochim. Biophys. Acta 440:622–636.

  140. Prince, R. C. (1988)Trends in Biochem. Sci. 13:286–288.

  141. Rapoport, T. A. (1986)CRC Critical Rev. Biochem.,20:73–137.

  142. Reinhammer, B. (1984) In:Copper Proteins and Copper Enzymes (Lontie, L. ed.) Vol 3, CRC Press Inc. Boca Raton, Florida pp. 1–35.

  143. Remington, S., Wiegand, G., Huber, R. (1982)J. Mol. Biol. 158:111–152.

  144. Richardson, J. S. et al. (1975)Proc. Natl. Acad. Sci. USA 72:1349–1353.

  145. Rossmann, M. G. and Blow, D. M. (1962)Acta Cryst. 15:24–31.

  146. Rossmann, M. G. et al.Nature (London)317:145–153.

  147. Rydén, L. (1984) In:Copper Proteins and Copper Enzymes (Lontie, L. ed.) Vol. 3, CRC Press Inc., Boca Raton, Florida pp. 34–100.

  148. Malmström, B. G. (1982)Annu. Rev. Biochem. 51:21–59.

  149. Sauer, K., Scheer, H. and Sauer, P. (1987)Photochem. Photobiol. 46:427–440.

  150. Scharnagl, C. (1983)Z. Naturforsch. 38c:951–959.

  151. Scheer, H. (1982) In:Light Reaction Path of Photosynthesis (Fong, F. K., ed.) Springer, Berlin pp. 7–45.

  152. Schirmer, T. et al. (1985)J. Mol. Biol. 184:257–277.

  153. Schirmer, T. et al. (1986)J. Mol. Biol. 188:651–676.

  154. Schirmer, T., Bode, W. and Huber, R. (1987)J. Mol. Biol. 196:677–695.

  155. Schirmer, T. and Vincent, M. G. (1987)Biochem. Biophys. Acta 893:379–385.

  156. Schmidt, J. A. et al. (1988)J. Amer. Chem. Soc. 110:1733–1740.

  157. Searle, G. F. W. et al. (1978)Biochem. Biophys. Acta 501:246–256.

  158. Siebzehnrübl, S., Fischer, R. and Scheer, H. (1987)Z. Naturforsch. 42:258–262.

  159. Slooten, L. (1972)Biochim. Biophys. Acta 256:452–466.

  160. Switalski, S. C. and Sauer, J. (1984)Photochem. Photobiol. 40:423–427.

  161. Takahashi, N., Ortel, T. L., Putnam, F. W. (1984)Proc. Natl. Acad. Sci. 81:390–394.

  162. Taube, H. and Gould, E. S. (1969)Acc. Chem. Res. 2:321–329.

  163. Teale, F. W. J. and Dale, R. E. (1970)Biochem. J. 116:161–169.

  164. Thornber, J. P. and Olson, J. M. (1971)Photochem. Photobiol. 14:329–341.

  165. Trebst, A. (1986)Z. Naturforsch. 41c:240–245.

  166. Tronrud, D. E., Schmid, M. F. and Matthews, B. W. (1986)J. Mol. Biol. 188:443–454.

  167. Weber, P. C. and Salemme, F. R. (1980)Nature 287:82–84.

  168. Weber, E. et al. (1981)J. Mol. Biol. 149:109–123.

  169. Wendler, J., Holzwarth, A. R. and Wehrmeyer, W. (1984)Biochem. Biophys. Acta 765:58–67.

  170. Weyer, K. A. et al. (1987)EMBO J. 6:2197–2202.

  171. Woodbury, N. W. et al. (1985)Biochemistry 24:7516–7521.

  172. Wraight, C. A. (1982) In:Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.) Academic Press, London pp. 181–197.

  173. Yamazaki, I. et al. (1984)Photochem. Photobiol. 39:233–240.

  174. Zickendraht-Wendelstadt, B., Friedrich, J. and Rüdiger, W. (1980)Photochem. Photobiol. 31: 367–376.

  175. Zilinskas, B. A. and Greenwald, L. S. (1986)Photosynth. Res. 10:7–35.

  176. Zuber, H. (1985)Photochem. Photobiol. 42:821–844.

  177. Zuber, H. (1986)Trends Biochem. Sci. 11:414–419.

Download references

Author information

Additional information

Dedicated to Christa

Nobel Lecture given on 8th December, 1988, by Professor Robert Huber and published inLes Prix Nobel 1988, printed in Sweden by Norstedts Tryckeri, Stockholm, Sweden, 1989, republished here with the permission of the Nobel Foundation, the copyright holder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, R. A structural basis of light energy and electron transfer in biology. Biosci Rep 9, 635–673 (1989). https://doi.org/10.1007/BF01114805

Download citation

Key Words

  • Light energy
  • electron transfer
  • X-ray crystallography