Theoretica chimica acta

, Volume 77, Issue 2, pp 123–141 | Cite as

Energy-adjustedab initio pseudopotentials for the second and third row transition elements

  • D. Andrae
  • U. Häußermann
  • M. Dolg
  • H. Stoll
  • H. Preuß
Article

Summary

Nonrelativistic and quasirelativisticab initio pseudopotentials substituting the M(Z−28)+-core orbitals of the second row transition elements and the M(Z−60)+-core orbitals of the third row transition elements, respectively, and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in molecular calculations have been generated. Additionally, corresponding spin-orbit operators have also been derived. Atomic excitation and ionization energies from numerical HF as well as from SCF pseudopotential calculations using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for lowlying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.

Key words

Pseudopotentials Spin-orbit operator Transition metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weeks JD, Hazi A, Rice SA (1969) Adv Chem Phys 16:283Google Scholar
  2. 2.
    Bardsley JN (1974) Case Stud At Phys 4:299Google Scholar
  3. 3.
    Dixon RN, Robertson IL (1978) Theoretical chemistry (specialist periodical reports), vol 3. The Chemical Society, London, pp 100–134Google Scholar
  4. 4.
    Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357Google Scholar
  5. 5.
    Christiansen PA, Ermler WC, Pitzer KS (1985) Annu Rev Phys Chem 36:407Google Scholar
  6. 6.
    Wedig U, Dolg M, Stoll H, Preuss H (1986) Energy-adjusted pseudopotentials for transition-metal elements. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO ASI Series C, vol 176. Reidel, Dordrecht, pp 79–89Google Scholar
  7. 7.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:2123Google Scholar
  8. 8.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270, 299Google Scholar
  9. 9.
    Hurley MM, Pacios LF, Christiansen PA, Ross RB, Ermler WC (1986) J Chem Phys 84:6840Google Scholar
  10. 10.
    Dolg M. Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866Google Scholar
  11. 11.
    LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812Google Scholar
  12. 12.
    Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:226, 256Google Scholar
  13. 13.
    Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173Google Scholar
  14. 14.
    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730Google Scholar
  15. 15.
    Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PWD (1989) J Chem Phys 91:1762Google Scholar
  16. 16.
    Froese Fischer C: Program MCHF77 (1978) Comput Phys Commun 14:145Google Scholar
  17. 17.
    Dolg M (1987) Modified version of the program MCHF77 [16]Google Scholar
  18. 18.
    Wood JH, Boring AM (1978) Phys Rev B18:2701Google Scholar
  19. 19.
    Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010Google Scholar
  20. 20.
    Martin RL, Hay PJ (1981) J Chem Phys 75:4539Google Scholar
  21. 21.
    Pitzer RM, Winter NW (1988) J Phys Chem 92:3061Google Scholar
  22. 22.
    Grant IP, McKenzie BJ, Norrington PH, Mayers DF, Pyper NC: Program MCDF (1980) Comput Phys Commun 21:207Google Scholar
  23. 23.
    Barthelat JC, Durand Ph: Program PSATOM (1981) Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  24. 24.
    Moore CE (1952, 1958) Atomic energy levels, vol II (Cr-Nb), vol III (Mo-La, Hf-Ac). Circular of the National Bureau of Standards 467, US Department of CommerceGoogle Scholar
  25. 25.
    Van Montfort JT, Van Piggelen HU, Aissing G, Nieuwpoort WC: Program LSTERMS (1983) Rijksuniversiteit te Groningen, NetherlandsGoogle Scholar
  26. 26.
    Dolg M, Schwerdtfeger P (1988) Modified version of the program MCDF [22]Google Scholar
  27. 27.
    Hafner P, Schwarz WHE (1979) Chem Phys Lett 65:537Google Scholar
  28. 28.
    Pelissier M, Daudey JP, Malrieu JP, Jeung GH (1986) The electronic structure of transition metal atoms and diatoms through pseudopotential approaches. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO ASI Series C, vol 176. Reidel, Dordrecht, pp 37–51Google Scholar
  29. 29.
    Hyla-Kryspin I, Demuynck J, Strich A, Benard M (1981) J Chem Phys 75:3954Google Scholar
  30. 30.
    Chang AHH, Pitzer RM (1989) J Am Chem Soc 111:2500Google Scholar
  31. 31.
    Fraga S, Saxena KMS, Karwowski J (1976) Handbook of atomic data. Physical Sciences Data, vol 5. Elsevier, Amsterdam Oxford New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. Andrae
    • 1
  • U. Häußermann
    • 1
  • M. Dolg
    • 1
  • H. Stoll
    • 1
  • H. Preuß
    • 1
  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgart 80Federal Republic of Germany

Personalised recommendations