Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A new class of polynomials relevant to electron collision problems

  • 27 Accesses

  • 7 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cohen, M. E., and P. T. Landsberg: Effect of compensation on breakdown fields in homogeneous semiconductors. Phys. Rev.154, 683–689 (1967).

  2. 2.

    Landsberg, P. T., C. Rhys-Roberts, and P. Lal: Auger recombination and impact ionization involving traps in semiconductors. Proc. Phys. Soc.84, 915–931 (1964).

  3. 3.

    Rainville, E. D.: The contiguous function relations forpFq. Bull. Amer. Math. Soc.51, 714–723 (1945).

  4. 4.

    Chaundy, T. W.: An extension of the hypergeometric function. Quart. J. Math. Ox. Ser.14, 55–78 (1943).

  5. 5.

    Rice, S. O.: Some properties of3 F 2(−n, n+1,Z; 1,p; v). Duke Math. J.6, 108–119 (1940).

  6. 6.

    Fasenmyer, M. C.: Some generalized hypergeometric polynomials. Bull. Amer. Math. Soc.53, 806–812 (1947).

  7. 7.

    Rainville, E. D.: Special functions. New York: Macmillan Company 1960.

  8. 8.

    Erdélyi, A.: Bateman manuscript project, higher transcendental functions, vol. 1. London: McGraw Hill 1953.

  9. 9.

    —: Bateman manuscript project, higher transcendental functions, vol. 2. London: McGraw Hill 1953.

  10. 10.

    Preece, C. T.: The products of two generalized hypergeometric functions. Proc. London Math. Soc. (2)22, 370–380 (1924).

  11. 11.

    Ryzhik, L. M., and I. S. Gradshteyn: Table of integrals, series and products. 4th ed., p. 852. New York and London: Academic Press 1965.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohen, M.E. A new class of polynomials relevant to electron collision problems. Math Z 108, 121–128 (1969). https://doi.org/10.1007/BF01114465

Download citation

Keywords

  • Electron Collision
  • Collision Problem