Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Why do the second row transition metal atoms prefer 5s14dm+1 to 5s24dm?

Numerical Hartree-Fock studies

Abstract

Numerical Hartree-Fock (NHF) calculations have been performed for 332 ground and low-lying excited states of the fifth period atoms Rb through Xe, with our special interest in the states arising from the 5s 24d m, 5s 14d m+1, and 5s 0 4d m+2 configurations of the second row transition metal atoms. Among various properties, orbital energies and mean values ofr of the outermost orbitals of each symmetry are presented as well as total energies. It is discussed in some detail why the second row transition metal atoms have a tendency to prefers 1 d m+1 as the ground configuration in contrast to the preferreds 2 d m configuration in the first row transition metal atoms. Our systematic NHF computations reported in this and the previous papers conclude that the Hartree-Fock method correctly predicts the experimental ground state of the atoms He through Xe with the sole exception for Zr.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Froese C (1966) J Chem Phys 45:1417

  2. 2.

    Froese-Fischer C (1972) At Data 4:301; (1973) At Data Nucl Data Tables 12:87

  3. 3.

    Mann JB (1973) At Data Nucl Data Tables 12:1

  4. 4.

    Fraga S, Karwowski J, Saxena KM (1976) Handbook of atomic data. Elsevier, Amsterdam

  5. 5.

    Froese-Fischer C (1977) The Hartree-Fock method for atoms. Wiley, New York

  6. 6.

    Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A46:3691

  7. 7.

    Partridge H (1987) NASA Technical Memorandum 89449, Ames Research Center, Moffett Field, CA

  8. 8.

    Partridge H (1989) NASA Technical Memorandum 101044, Ames Research Center, Moffett Field, CA

  9. 9.

    Koga T, Tatewaki H, Thakkar AJ (1994) J Chem Phys 100:8140

  10. 10.

    Hartree DR, Hartree W (1936) Proc Roy Soc (London) A154:588

  11. 11.

    Froese C (1968) J Chem Phys 47:4010

  12. 12.

    Hay PJ (1977) J Chem Phys 66:4377

  13. 13.

    Tatewaki H, Koga T, Sakai Y, Thakkar AJ (1994) J Chem Phys 101:4945

  14. 14.

    Tatewaki H, Koga T (1994) Chem Phys Lett 228:562

  15. 15.

    Tatewaki H, Sekiya M, Sasaki F, Matsuoka O, Koga T (1995) Phys Rev A51:197

  16. 16.

    Froese-Fischer C (1972) Comput Phys Commun 4:107

  17. 17.

    Tatewaki H, Taketa K, Sasaki F (1971) Int J Quantum Chem 5:335

  18. 18.

    Tatewaki H, Tanaka K (1974) J Chem Phys 60:601

  19. 19.

    Moore CE (1971) Atomic Energy Levels, NSRDS-NBS 35, Vols 1–3, Nat. Bur. Stand. US, Washington

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koga, T., Aoki, H. & Tatewaki, H. Why do the second row transition metal atoms prefer 5s14dm+1 to 5s24dm?. Theoret. Chim. Acta 92, 281–295 (1995). https://doi.org/10.1007/BF01113868

Download citation

Key words

  • Transition metal atoms
  • Ground and low-lying excited states
  • Numerical Hartree-Fock approximation