Theoretica chimica acta

, Volume 93, Issue 1, pp 1–16 | Cite as

Diagrammatic valence bond studies on hemocyanin

  • Pravat Kumar Mandal
  • P. T. Manoharan
  • Bhabadyuti Sinha
  • S. Ramasesha


The Diagrammatic Valence Bond studies on the active sites of hemocyanin, consisting of two Cu(I) ions and an oxygen molecule, are performed to find out the stable geometrical pattern and electronic structure. Different parameters used in this theoretical approach are taken from existing literature on highTc superconductors. Attempts have been made to find out the differences in electronic structure of [Cu2O2]+2 and [Cu2O2N4]+2 as it is observed that coordination of nitrogen ligand do affect electronic structure i.e. spin excitation gaps and charge and spin density distribution. A comparison of our results with earlier theoretical results are also presented.

Key words

DVB theory Active site Hemocyanine Charge density Spin density Excitation gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fernandez-Moran H, Van Bruggen EFJ (1966) J Molec Biol 16:191Google Scholar
  2. 2.
    Mellema JE, Klug A (1972) Nature 239:146Google Scholar
  3. 3.
    Van Holde KE (1982) Rev Biophys 15:1Google Scholar
  4. 4.
    Holde KE, Bruggen EF (1971) In: Timasheff SN, Fasman GD (eds) Subunits in Biological Systems:Part A. Marcel Dekker, New York, pp 1–53Google Scholar
  5. 5.
    Dooley DM, Scott RA, Ellinghaus J, Solomon EI, Gray HB (1978) Proc Nat Aca Sci USA 75:3019Google Scholar
  6. 6.
    Larrabee JA, Spiro TG (1980) J Am Chem Soc 102:4217 and references thereinGoogle Scholar
  7. 7.
    Eickman NC, Himmelwright RS, Solomon EI (1979) Proc Nat Aca Sci USA 76:2094Google Scholar
  8. 8.
    Himmelwright RS, Eickman NC, Solomon EI (1979) J Am Chem Soc 101:1576Google Scholar
  9. 9.
    Hodgson MS, Eccles KO, Lontie R (1981) J Am Chem Soc 103:984Google Scholar
  10. 10.
    Anne Volbeda, Hol WGJ (1989) J Mol Biol 209:249Google Scholar
  11. 11.
    Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WGJ (1993) Protein Science 2:597Google Scholar
  12. 12. (a)
    Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) J Am Chem Soc 106:3372.Google Scholar
  13. 12. (b)
    Karlin KD, Cruse RW, Gultnech Farooq A, Hayes JC, Zubieta J (1987) J Am Chem Soc 109:2668Google Scholar
  14. 13.
    Kitajima N, Koda T, Mora-oka Y, Toriumi K (1989) J Am Chem Soc 111:8975Google Scholar
  15. 14.
    Kitajima N, Koda T, Hashimoto S, Kitawaga T, Mora-oka Y (1990) J Am Chem Soc 1 12:8833Google Scholar
  16. 15.
    Fenton DE, Lintvedt RL (1978) J Am Chem Soc 100:6357Google Scholar
  17. 16.
    Fenton DE (1989) Pure Appl Chem 61:903Google Scholar
  18. 17.
    Ross PK, Solomon EI (1990) J Am Chem Soc 112:5871Google Scholar
  19. 18.
    Ross PK, Solomon EI (1991) J Am Chem Soc 113:3246Google Scholar
  20. 19.
    Baldwin MJ, Ross PK, Pate JE, Tyeklar Z, Karlin KD, Solomon EI (1991) J Am Chem Soc 113:8671Google Scholar
  21. 20.
    Maddaluno J, Giessner-Prettre C (1991) Inorg Chem 30:3439Google Scholar
  22. 21.
    Chandler CS, Manoharan PT (1993) Proc XXIX ICCC, University of Lussane, Switzerland and results to be communicatedGoogle Scholar
  23. 22.
    Pravat K Mandal, Bhabadyuti Sinha, Manoharam PT, Ramasesha S (1992) Chem Phys Letters 191:448Google Scholar
  24. 23.
    Pravat K Mandal, Manoharan PT (1993) Chem Phys Letters 210:463Google Scholar
  25. 24.
    Zhang FC, Rice TM (1988) Phys Rev B 37:3759Google Scholar
  26. 25.
    Hybertsen MS, Schlulet M (1989) Phys Rev B 39:9028Google Scholar
  27. 26.
    Ramasesha S, Rao CNR (1991) Phys Rev B 44:7064Google Scholar
  28. 27.
    Ohno K (1964) Theor Chim Acta 2:219Google Scholar
  29. 28. (a)
    Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:1965.Google Scholar
  30. 28. (b)
    Pople JA, Beveridge D (1970) Approximate Molecular Orbital Theory. McGraw-Hill, New YorkGoogle Scholar
  31. 29. (a)
    Pariser R, Parr RG (1953) J Chem Phys 21:466.Google Scholar
  32. 29. (b)
    Klein DJ, Soos ZG (1971) Mol Phys 20:1013Google Scholar
  33. 30.
    Bhabadyuti Sinha, Ramasesha S (1993) Phys Rev B 48:16410Google Scholar
  34. 31.
    Soos ZG, Ramasesha S (1990) In: Valence Bond Theory and Chemical Structure. Klein DJ, N Trinajstich (ed) Elsevier, AmsterdamGoogle Scholar
  35. 32.
    Ramasesha S, Albert IDL, Bhabadyuti Sinha (1991) Mol Phys 72:537Google Scholar
  36. 33.
    Rettrup S (1982) J Comput Phys 45:100Google Scholar
  37. 34. (a)
    Hubbard J (1963) Proc Roy Soc Lond Ser A 276:238.Google Scholar
  38. 34. (b)
    ibid 277:237.Google Scholar
  39. 34. (c)
    ibid 281:401Google Scholar
  40. 35.
    Kanamori J (1963) Prog Theor Phys 30:275Google Scholar
  41. 36.
    Gutzwiller MC (1963) Phys Rev Lett 10:159Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Pravat Kumar Mandal
    • 1
  • P. T. Manoharan
    • 1
  • Bhabadyuti Sinha
    • 2
  • S. Ramasesha
    • 2
    • 3
  1. 1.Department of ChemistryIndian Institute of TechnologyMadrasIndia
  2. 2.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  3. 3.Jawaharlal Nehru Center for Advanced Scientific ResearchIndian Institute of Science CampusBangaloreIndia

Personalised recommendations