Theoretica chimica acta

, Volume 90, Issue 2–3, pp 189–203

Theoretical study of the first transition row oxides and sulfides

  • Charles W. BauschlicherJr.
  • Phillippe Maitre
Article

Summary

The first transition row oxides and sulfides are studied using several different levels of theory. The calculations show the bonding mechanism in the sulfides and oxides to be very similar. For the oxides, accurate experimental data allow the theoretical methods to be calibrated. The same level of theory is used to study the sulfides where there is far less experimental information. For ScO through MnO and CuO the coupled cluster singles and doubles technique including a perturbational estimate of the connected triple excitations [CCSD(T)] yields spectroscopic constants (γe, ωe, andD0) in good agreement with experiment. The triple excitations are found to be very important in achieving this accuracy. For FeO to NiO, the self-consistent-field (SCF) approach yields π orbitals that are localized on the metal or oxygen. This appears to cause problems for the single reference techniques; this is discussed in detail for NiO. The complete-active-space SCF/internally contracted averaged coupled pair functional approach (CASSCF/ICACPF) works well for FeO to NiO. The calculation of accurate dipole moments is found to be very difficult.

Key words

Transition metal oxides Transition metal sulfides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merer AJ (1989) Annu Rev Phys Chem 40:407Google Scholar
  2. 2.
    Langhoff SR, Bauschlicher CW (1986) Chem Phys Lett 124:241Google Scholar
  3. 3.
    Steimle TC, Nachman DF, Shirley JE, Bauschlicher CW, Langhoff SR (1989) J Chem Phys 91:2049Google Scholar
  4. 4.
    Bauschlicher CW, Nelin CJ, Bagus PS (1985) J Chem Phys 82:3265Google Scholar
  5. 5.
    Bauschlicher CW, Langhoff SR, Komornicki A (1990) Theor Chim Acta 77: 263Google Scholar
  6. 6.
    Dolg M, Stoll WH, Preuss H (1987) J Chem Phys 86:2123Google Scholar
  7. 7.
    Bauschlicher CW, Langhoff SR (1986) J Chem Phys 85:5936Google Scholar
  8. 8.
    Ahlrichs R, Scharf P, Ehrhardt C (1985) J Chem Phys 82:890Google Scholar
  9. 9.
    Chong DP, Langhoff SR (1986) J Chem Phys 84:5606Google Scholar
  10. 10.
    Armentrout PB, Kickel BL, In: BS Freiser (ed.), Organometallic ion chemistry (Understanding Chemical Reactivity). Kluwer Academic Publishers, Dordrecht, in press.Google Scholar
  11. 11.
    Siegbahn PEM (1993) Theor Chim Acta 86:219Google Scholar
  12. 12.
    Bauschlicher CW, Langhoff SR, Partridge H, Chong DP, Pettersson LGM, unpublished.Google Scholar
  13. 13.
    Wachters AJH (1970) J Chem Phys 52:1033Google Scholar
  14. 14.
    Hay PJ (1977) J Chem Phys 66:4377Google Scholar
  15. 15.
    Dunning TH (1989) J Chem Phys 90:1007; Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796; Woon DE, Dunning TH (1993) J Chem Phys 98:1358; Woon DE, Peterson KA, Dunning TH, unpublished.Google Scholar
  16. 16.
    Almlöf J, Taylor PR (1987) J Chem Phys 86:4070Google Scholar
  17. 17.
    Partridge H (1989) J Chem Phys 90:1043Google Scholar
  18. 18.
    Partridge H, Bauschlicher CW, Langhoff SR (1992) J Phys Chem 96:5350Google Scholar
  19. 19.
    Barlett RJ (1981) Annu Rev Phys Chem 32:359Google Scholar
  20. 20.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479Google Scholar
  21. 21.
    Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185Google Scholar
  22. 22.
    Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413Google Scholar
  23. 23.
    Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803; Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514Google Scholar
  24. 24.
    SWEDEN is an electronic structure program written by Almlöf J, Bauschlicher CW, Blomberg MRA, Chong DP, Heiberg A, Langhoff SR, Malmqvist P-A, Rendell AP, Roos BO, Siegbahn PEM, Taylor PR.Google Scholar
  25. 25.
    Lindh R, Ryu U, Liu B (1991) J Chem Phys 95:5889Google Scholar
  26. 26.
    TITAN, a set of electronic structure programs written by Lee TJ, Rendell AP, Rice JEGoogle Scholar
  27. 27.
    Scuseria GE (1991) Chem Phys Lett 176:27Google Scholar
  28. 28.
    Frisch MJ, Trucks GW, Head-Gordon M, Gill PMW, Wong MW, Foresman JB, Johnson BG, Schlege HB, Robb, MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1992) Gaussian 92, Revision E.2. Gaussian, Pittsburgh PAGoogle Scholar
  29. 29.
    Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053; Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259Google Scholar
  30. 30.
    Huber KP, Herzberg G (1979) Constants of Diatomic Molecules, Van Nostrand Reinhold, New YorkGoogle Scholar
  31. 31.
    Gordon RM, Merer AJ (1980) Can Phys 58:642Google Scholar
  32. 32.
    Cheung AS-C, Lee N, Lyyra AM, Merer AJ, Taylor WW (1982) J Mol Spectrosc 95:213Google Scholar
  33. 33.
    Green DW, Reedy GT, Kay JG (1979) J Mol Spectrosc 78:257Google Scholar
  34. 34.
    Ram RS, Jarman CN, Bernath PF (1993) J Mol Spectrosc 160:574Google Scholar
  35. 35.
    Srdanov VI, Harris DO (1988) J Chem Phys 89:2748Google Scholar
  36. 36.
    Watson LR, Thiem TL, Dressler RA, Salter RH, Murad E (1993) J Phys Chem 97:5577Google Scholar
  37. 37.
    Clemmer DE, Dalleska NF, Armentrout PB (1991) J Chem Phys 95:7623Google Scholar
  38. 38.
    Barrow RF, Cousins C (1971) In: Eyring L (ed.), Advances in high temperature chemistry, Vol 4. Academic, New YorkGoogle Scholar
  39. 39.
    Douay M, Pinchemel B, Dufour C (1985) Can J Phys 63:1380Google Scholar
  40. 40.
    Moore CE (1949) Atomic energy levels, Natl Bur Stand (US) circ, 467Google Scholar
  41. 41.
    Martin RL (1983) J Phys Chem 87:750; see also Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010Google Scholar
  42. 42.
    Jeung GH, Koutecky J (1988) J Chem Phys 88:3747Google Scholar
  43. 43.
    Shirley J, Scurlock C, Steimle T (1990) J Chem Phys 93:1568Google Scholar
  44. 44.
    Sennesal JM, Schamps J (1987) Chem Phys 114:37Google Scholar
  45. 45.
    Steimle T, Shirley JE (1989) J Chem Phys 91:8000Google Scholar
  46. 46.
    Suenram RD, Fraser GT, Lovas FJ, Gillies CW (1991) J Mol Spectrosc 148:114Google Scholar
  47. 47.
    Steimle TC, Nachman DF, Shirley JE, Merer AJ (1989) J Chem Phys 90:5360Google Scholar
  48. 48.
    Steimle TC, Nachman DF, Fletcher DA (1987) J Chem Phys 87:5670Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Charles W. BauschlicherJr.
    • 1
  • Phillippe Maitre
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations