Advertisement

Theoretica chimica acta

, Volume 90, Issue 2–3, pp 167–187 | Cite as

Multiconfigurational second-order perturbative methods: Overview and comparison of basic properties

  • Jean-Paul Malrieu
  • Jean-Louis Heully
  • Andréi Zaitsevskii
Article

Summary

The multiconfigurational second-order perturbative treatments of molecular electronic calculations can be classified into four groups: i) quasi-degenerate perturbation theory (QDPT) in the basis of determinants, ii) non-degenerate perturbation theory applied to eigenvectors resulting from a truncated CI, ii) QDPT in a model space of non-interacting multiconfigurational functions, iv) intermediate Hamiltonians theory, and examined according to three criteria: i) risk of numerical instability due to intruder states, ii) ability to treat the effect of the outer-space on the model space component of the wavefunction, especially important for the treatment of weakly avoided crossings, iii) separability for (A* ... B) problems. None of the existing methods satisfies these three criteria, as shown both by model analysis and real ab initio calculations on LiF and CuF.

Key words

Many-electron correlation problem Perturbation theory Multiconfigurational approaches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstone J (1957) Proc Roy Soc London Ser A 239:267Google Scholar
  2. 2.
    Möller C, Plesset MS (1934) Phys Rev 46:618Google Scholar
  3. 3.
    Hehre WJ, Pople JA, Radom L, Schleyer PvR (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  4. 4.
    Van Vleck JH (1929) Phys Rev 33:467Google Scholar
  5. 5.
    Bloch C, Horowitz J (1958) Nucl Phys 8:91Google Scholar
  6. 6.
    des Cloizeaux J (1960) Nucl Phys 20:321Google Scholar
  7. 7.
    Malrieu JP, Durand Ph, Daudey JP (1985) J Phys A: Math Gen 18:809Google Scholar
  8. 8.
    Spiegelmann F, Malrieu JP (1984) J Phys B: At Mol Phys 17:1235; 17:1259Google Scholar
  9. 9.
    Brandow BH (1967) Rev Mod Phys 39:771Google Scholar
  10. 10.
    Sandars PGH (1969) Adv Chem Phys 14:365Google Scholar
  11. 11.
    Lindgren I (1974) J Phys B: At Mol Phys 7:2449Google Scholar
  12. 12.
    Kvasnicka V (1977) Adv Chem Phys 36:345Google Scholar
  13. 13.
    Hose G, Kaldor U (1979) J Phys B: At Mol Phys 12:3827Google Scholar
  14. 14.
    Freed KF, Sheppard M (1982) J Phys Chem 86:2130Google Scholar
  15. 15.
    Kaldor U (1985) Intern J Quantum Chem 28:103Google Scholar
  16. 16.
    Durand Ph, Malrieu JP (1987) In: Lawley KP (ed) Ab initio methods of quantum chemistry, Vol 1. Wiley, p 321Google Scholar
  17. 17.
    Zarrabian S, Paldus J (1990) Intern J Quantum Chem 38:761Google Scholar
  18. 18.
    Freed KF (1989) In: Kaldor U (ed) Many-body methods in quantum chemistry. Springer, Berlin, p 1Google Scholar
  19. 19.
    Rawlings DC, Davidson ER (1983) Chem Phys Lett 98:424Google Scholar
  20. 20.
    Hose G (1989) In: Kaldor U (ed) Many-body methods in quantum chemistry. Springer, Berlin, p 43Google Scholar
  21. 21.
    Evangelisti S, Daudey JP, Malrieu JP (1987) Phys Rev A: Gen Phys 35:4930Google Scholar
  22. 22.
    Huron B, Malrieu JP, Rancurel R (1973) J Chem Phys 58:5745Google Scholar
  23. 23.
    Wolinski K, Pulay P (1989) J Chem Phys 90:3647Google Scholar
  24. 24.
    Harrison RJ (1991) J Chem Phys 94:5021Google Scholar
  25. 25.
    Malrieu JP (1982) Theoret Chim Acta 62:163Google Scholar
  26. 26.
    Rubio J, Povill A, Illas F, Malrieu JP (1992) Chem Phys Lett 200:559Google Scholar
  27. 27.
    Anderson K, Malmqvist P, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483; Anderson K, Malmqvist P, Roos BO (1992) J Chem Phys 96:1218Google Scholar
  28. 28.
    Morrison JC, Froese Fischer C (1987) Phys Rev A 35:2429PubMedGoogle Scholar
  29. 29.
    Serrano-Andres L, Merchan M, Nebot-Gil I, Lindh R, Roos BO (1993) J Chem Phys 98:3151Google Scholar
  30. 30.
    Sheppard MG, Schneider BI, Martin RL (1983) J Chem Phys 79:1364Google Scholar
  31. 31.
    Spiegelmann F, Gadéa FX, Castex MC (1990) Chem Phys 145:173Google Scholar
  32. 32.
    Audouard E, Spiegelmann F (1991) J Chem Phys 94:6102Google Scholar
  33. 33.
    Nakano H (1993) J Chem Phys 99:7983Google Scholar
  34. 34.
    Lisini A, Decleva P (1992) Chem Phys 168:1Google Scholar
  35. 35.
    Clotet A, Daudey JP, Malrieu JP, Rubio J, Spiegelmann F (1990) Chem Phys 147:293Google Scholar
  36. 36.
    Sheppard MG (1984) J Chem Phys 80:1225Google Scholar
  37. 37.
    Heully JL, Evangelisti S, Durand Ph (1994) Int J Quantum Chem, to be publishedGoogle Scholar
  38. 38.
    Zaitsevskii AV (1993) J Phys II France 3:435Google Scholar
  39. 39.
    Zaitsevskii AV (1993) J Phys II France 3:1593Google Scholar
  40. 40.
    Heully JL, Daudey JP (1988) J Chem Phys 88:1046Google Scholar
  41. 41.
    Zaitsevskii AV, Dementev AI (1990) Chem Phys Lett 168:589Google Scholar
  42. 42.
    Zaitsevskii AV, Dementev AI (1991) Optics Commun 86:461Google Scholar
  43. 43.
    Hoffmann MR (1993) Chem Phys Lett 210:193Google Scholar
  44. 44.
    Kozlowski PM, Davidson ER (1994) J Chem Phys 100:3672Google Scholar
  45. 45.
    Bauschlicher CW, Langhoff SR (1988) J Chem Phys 89:4246Google Scholar
  46. 46.
    Andersson K, Blomberg MRA, Fülscher MP, Kellö V, Lindh R, Malmquist P-Aa, Noga J, Olsen J, Ross BO, Sadlej AJ, Sieghban PEM, Urban M, Widmark P-O (1991) MOLCAS, version 2, University of Lund, SwedenGoogle Scholar
  47. 47.
    Ramirez-Solis A, Daudey JP (1989) Chem Phys 134:111Google Scholar
  48. 48.
    Nodeless pseudopotentials have been included in MOLCAS2 by M Pélissier, Université de Poitiers, FranceGoogle Scholar
  49. 49.
    Bauschlicher CW, Langhoff SR, Komornicki A (1990) Theoret Chim Acta 77:263Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Jean-Paul Malrieu
    • 1
  • Jean-Louis Heully
    • 1
  • Andréi Zaitsevskii
    • 1
  1. 1.IRSAMC, Laboratoire de Physique QuantiqueUniversité Paul SabatierToulouse cedexFrance

Personalised recommendations