Theoretica chimica acta

, Volume 90, Issue 5–6, pp 441–458 | Cite as

Ab initio calculation of electronic circular dichroism fortrans-cyclooctene using London atomic orbitals

  • Keld L. Bak
  • Aage E. Hansen
  • Kenneth Ruud
  • Trygve Helgaker
  • Jeppe Olsen
  • Poul Jørgensen
Article

Summary

The second-quantization magnetic dipole operator that arises when London atomic orbitals are used as basis functions is derived. In atomic units, the magnetic dipole operator is defined as the negative of the first derivative of the electronic Hamiltonian containing the interaction with the external magnetic field. It is shown that for finite basis sets, the gauge origin dependence of the resulting magnetic dipole operator is analogous to that of the exact operator, and that the derived operator converges to the exact operator in the limit of a complete basis set. It is also demonstrated that the length expression for the rotatory strength in linear response calculations gives gauge-origin-independent results. Sample calculations ontrans-cyclooctene and its fragments are presented. Compared to conventional orbitals, the basis set convergence of the rotatory strengths calculated in the length form using London atomic orbitals is favourable. The rotatory strength calculated fortrans-cyclooctene agrees nicely with the corresponding experimental circular dichroism spectrum, but the spectra for the fragment molecules show little resemblance with that oftrans-cyclooctene.

Key words

Electronic circular dichroism Trans-cyclooctene London atomic orbitals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen AaE, Bouman TD (1980) Adv Chem Phys 44:545Google Scholar
  2. 2.
    London F (1937) J Phys Radium 8:397Google Scholar
  3. 3.
    Hameka HF (1958) Mol Phys 1:203Google Scholar
  4. 4.
    Hameka HF (1959) Z Naturforsch 14a:599Google Scholar
  5. 5.
    Mc Weeny R (1958) Mol Phys 1:311Google Scholar
  6. 6.
    Seamans L, Linderberg J (1972) Mol Phys 24:1393Google Scholar
  7. 7.
    Dalgaard E (1978) Proc R Soc Lond A 361:487Google Scholar
  8. 8.
    Ditchfield R (1972) J Chem Phys 56:5688Google Scholar
  9. 9.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251Google Scholar
  10. 10.
    Gauss J (1992) Chem Phys Lett 191:614Google Scholar
  11. 11.
    Ruud K, Helgaker T, Kobayashi R, Jørgensen P, aiBak KL, Jensen HJAa (1994) J Chem Phys 100:8178Google Scholar
  12. 12.
    Ruud K, Helgaker T, Bak KL, Jørgensen P, Jensen HJAa (1993) J Chem Phys 99:3847Google Scholar
  13. 13.
    Ruud K, Skaane H, Helgaker T, Bak KL, Jørgensen P (1994) J Am Chem SocGoogle Scholar
  14. 14.
    Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa (1993) J Chem Phys 98:8873Google Scholar
  15. 15.
    Bak KL, Jørgensen P, Helgaker T, Ruud K Jensen HJAa (1994) J Chem Phys 100:6620Google Scholar
  16. 16.
    McLachlan AD, Ball MA (1964) Rev Mod Phys 36:844Google Scholar
  17. 17.
    Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, New YorkGoogle Scholar
  18. 18.
    Olsen J, Jørgensen P (1985) J Chem Phys 82:3235Google Scholar
  19. 19.
    Olsen J, Bak KL, Helgaker T, Ruud K, Jørgensen P, Theoret Chem Acta submittedGoogle Scholar
  20. 20.
    Mason MG, Schnepp O (1973) J Chem Phys 59:1092Google Scholar
  21. 21.
    Levi CC, Hoffmann R (1972) J Am Chem Soc 94:3446Google Scholar
  22. 22.
    Hansen AaE, Bouman TD (1985) J Am Chem Soc 107:4828Google Scholar
  23. 23.
    Helgaker T, Jørgensen P (1991) J Chem Phys 95:2595Google Scholar
  24. 24.
    Yeager DL, Jørgensen P (1979) Chem Phys Lett 65:77Google Scholar
  25. 25.
    Koch H, Helgaker T, Jørgensen P (1990) J Chem Phys 93:3345.Google Scholar
  26. 26.
    Helgaker T, Bak KL, Jensen HJAa, Jørgensen P, Kobayashi R, Koch H, Mikkelsen K, Olsen J, Ruud K, Taylor PR, Vahtras O, ABACUS, a second-order MCSCF molecular property programGoogle Scholar
  27. 27.
    Jensen HJAa, Ågren H, SIRIUS, a program for calculation for MCSCF wave functionsGoogle Scholar
  28. 28.
    Rauk A, Barriel JM, Ziegler T (1977) Prog Theoret Org Chem 2:467Google Scholar
  29. 29.
    Liskow DH, Segal GA (1978) J Am Chem Soc 100:2945Google Scholar
  30. 30.
    The dihedral angle H-C1-C2-H in Ref [22], Table 1 is misprinted as 188.9. The correct value is −188.9Google Scholar
  31. 31.
    Dunning THJr (1989) J Chem Phys 90:1007Google Scholar
  32. 32.
    Kendall RA, Dunning THJr, Harrison RJ (1992) J Chem Phys 96:6796Google Scholar
  33. 33.
    Woon DE, Dunning THJr (1993) J Chem Phys 98:1358Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Keld L. Bak
    • 1
  • Aage E. Hansen
    • 1
  • Kenneth Ruud
    • 2
  • Trygve Helgaker
    • 2
  • Jeppe Olsen
    • 3
  • Poul Jørgensen
    • 4
  1. 1.Department of Physical ChemistryCopenhagen UniversityCopenhagen ØDenmark
  2. 2.Department of ChemistryUniversity of Oslo, BlindernOsloNorway
  3. 3.Theoretical Chemistry, Chemical CentreUniversity of LundLundSweden
  4. 4.Department of ChemistryAarhus UniversityAarhus CDenmark

Personalised recommendations