Advertisement

Theoretica chimica acta

, Volume 84, Issue 4–5, pp 271–287 | Cite as

Evaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers

  • Alistair P. Rendell
  • Timothy J. Lee
  • Andrew Komornicki
  • Stephen Wilson
Article

Summary

Three previously reported algorithms for the evaluation of the fourth-order triple excitation energy component in many-body perturbation theory have been compared. Their implementation on current Intel distributed memory parallel computers has been investigated. None of the algorithms, which were developed for shared memory computer architectures, performed well since they lead to prohibitive IO demands. A new algorithm suitable for distributed memory machines is suggested and its implementation on two Intel i860 supercomputers is described. A high level of parallelism is obtained.

Key words

Fourth-order triple excitation energy Many-body perturbation theory Intel distributed memory parallel computers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson S (1978) in: Saunders VR (ed) Correlated wave functions. Proc Daresbury Lab Study Weekend. SRC Daresbury LaboratoryGoogle Scholar
  2. 2.
    Wilson S, Silver DM (1979) Int J Quantum Chem 15:683Google Scholar
  3. 3.
    Wilson S, Saunders VR (1979) J Phys B At Mol Phys 12:L403; (1980)ibid 13:1505Google Scholar
  4. 4.
    Wilson S (1979) J Phys B At. Mol Phys 123:L657; (1980)ibid 13:1505Google Scholar
  5. 5.
    Guest MF, Wilson S (1980) Chem Phys Lett 72:49Google Scholar
  6. 6.
    Wilson S, Guest MF (1980) Chem Phys Lett 73:607Google Scholar
  7. 7.
    Frisch MJ, Krishnan R, Pople JA (1980) Chem Phys Lett 75:66Google Scholar
  8. 8.
    Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244Google Scholar
  9. 9.
    Wilson S, Saunders VR (1980) Comput Phys Commun 19:293Google Scholar
  10. 10.
    Wilson S, Guest MF (1981) Molec Phys 43: 1331Google Scholar
  11. 11.
    Noga J (1983) Comput Phys Commun 29:117Google Scholar
  12. 12.
    Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906Google Scholar
  13. 13.
    Raghavachari K (1985) J Chem Phys 82:4607Google Scholar
  14. 14.
    Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041Google Scholar
  15. 15.
    Urban M, Cernusak I, Kello V, Noga J (1987) in: Electron correlation in atoms and molecules, Meth Comput Chem 1:117Google Scholar
  16. 16.
    Noga J, Bartlett RJ (1987) J Chem Phys 86:7041Google Scholar
  17. 17.
    Scuseria GE, Schaefer HF (1988) Chem Phys Lett 152:382Google Scholar
  18. 18.
    Adamowitz L, Bartlett RJ (1988) Phys Rev A37:1Google Scholar
  19. 19.
    Dupuis M, Mougenot P, Watts JD, Hurst GJB, Villar HO (1989) in: Clementi E (ed) MOTECC modern techniques in computational chemistry. Escom, LeidenGoogle Scholar
  20. 20.
    Watts JD, Dupuis M (1989) IBM Technical Report KGN-197, August 16, 1989Google Scholar
  21. 21.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479Google Scholar
  22. 22.
    Lee TJ, Rendell AP, Taylor PR (1990) J Chem Phys 92:489Google Scholar
  23. 23.
    Lee TJ, Scuseria GE (1990) J Chem Phys 93:489Google Scholar
  24. 24.
    Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851Google Scholar
  25. 25.
    Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513Google Scholar
  26. 26.
    Baker DJ, Moncrieff D, Wilson S (1990) in: Evans RG, Wilson S (eds) Supercomputational science. Plenum Press, NYGoogle Scholar
  27. 27.
    Lee TJ, Rice JE (1991) J Chem Phys 94:1215Google Scholar
  28. 28.
    Baker DJ, Moncrieff D, Saunders VR, Wilson S (1991) Comput Phys Commun 62:25Google Scholar
  29. 29.
    Rendell AP, Lee TJ, Komornicki A (1991) Chem Phys Lett 178:462Google Scholar
  30. 30.
    Moncrieff D, Saunders VR, Wilson S (submitted) Int J Supercomputer ApplnGoogle Scholar
  31. 31.
    Moncrieff D, Saunders VR, Wilson S (1991) Parallel Computing 17:773Google Scholar
  32. 32.
    Wilson S (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular physics. Plenum Press, NYGoogle Scholar
  33. 33.
    Mårtensson-Pendrill AM, Wilson S (in preparation)Google Scholar
  34. 34.
    Wilson S, Moncrieff D (submitted) SupercomputerGoogle Scholar
  35. 35.
    Moncrieff D, Saunders VR, Wilson S (submitted) Comput Phys CommunGoogle Scholar
  36. 36.
    Moncrieff D, Saunders VR, Wilson S, Rutherford Appleton Laboratory Report RA-91-064Google Scholar
  37. 37.
    Bartlett RJ, Shavitt I, Purvis II G (1979) J Chem Phys 71:281Google Scholar
  38. 38.
    Cullen JM, Zerner MC (1982) Theoret Chim Acta 61:203Google Scholar
  39. 39.
    Almlöf J (1991) Chem Phys Lett 181:319Google Scholar
  40. 40.
    Paldus J (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular physics. Plenum Press, NYGoogle Scholar
  41. 41.
    Paldus J, Čižek J, Shavitt I (1972) Phys Rev A5:50Google Scholar
  42. 42.
    Wilson S (ed) (1989) Concurrent computation in chemical calculations. Meth Comput Chem 3, Plenum Press, NYGoogle Scholar
  43. 43.
    Saunders VR (1990) in: Evans RG, Wilson S (eds) Supercomputational science. Plenum Press, NYGoogle Scholar
  44. 44.
    Saunders VR, Wilson S (in press) Parallel ComputingGoogle Scholar
  45. 45.
    Guest MF, Sherwood P, van Lenthe JH, Theoret Chim Acta (this issue)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Alistair P. Rendell
    • 1
  • Timothy J. Lee
    • 2
  • Andrew Komornicki
    • 3
  • Stephen Wilson
    • 4
  1. 1.SERC Daresbury LaboratoryWarringtonUK
  2. 2.NASA Ames Research CenterMoffett FieldUSA
  3. 3.Polyatomics Research InstituteMountain ViewUSA
  4. 4.SERC Rutherford Appleton LaboratoryChiltonUK

Personalised recommendations