Theoretica chimica acta

, Volume 82, Issue 3–4, pp 299–308 | Cite as

Electronic structure and the unimolecular reactions of imine peroixde HNOO

  • Takayuki Fueno
  • Keiichi Yokoyama
  • Shin-ya Takane


Electronic structure and possible unimolecular reaction paths of a linear four-atom molecule HNOO to be formed by the addition of NH(3Σ) toward O2(3Σg) are investigated by the SCF and MRD-CI calculations employing the 6–31G** basis functions. HNOO in its ground state (1A′) is an ozone-like diradicaloid, whose N–O binding energy is only 27 kJ/mol. Geometries and excitation energies of various diradical (excited) states, both singlet and triplet, are examined. The isomerization paths of the ground-state HNOO(1A′) are traced by a multi-configuration (MC) SCF procedure and the activation barrier heights evaluated by the CI treatment. It has proved that energetically the most favorable is the 1,3-hydrogen migration to give hydroperoxynitrene NOOH(1A′) with the barrier height of 62 kJ/mol. The nitrene should be extremely unstable; it is liable to be decomposed to NO + OH with virtually no activation barrier.

Key words

Imine peroxide (HNOO) Diradicaloid Diradicals 1,3-Hydrogen migration Hydroperoxynitrene (NOOH) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. a
    Fueno T, Bonačić-Koutecký V, Koutecký J (1983) J Am Chem Soc 105:5547–5557Google Scholar
  2. 1. b
    Fueno T, Kajimoto O, Bonačić-Koutecký V (1984) J Am Chem Soc 106:4061–4062Google Scholar
  3. 1. c
    Fueno T, Fukuda M, Yokoyama K (1988) Chem Phys 124:265–272Google Scholar
  4. 1. d
    Fueno T (1988) J Mol Struct (Theochem) 170:143–149Google Scholar
  5. 1. e
    Fueno T, Yamaguchi K, Kondo O (1990) Bull Chem Soc Jpn 63:901–912Google Scholar
  6. 2.
    Zetzsch C, Hansen I (1978) Ber Bunsen-Ges Phys Chem 82:830–833Google Scholar
  7. 3.
    Meaburn GM, Gordon S (1968) J Phys Chem 72:1592–1598Google Scholar
  8. 4.
    Hack W, Kurzke H, Wagner HGg (1985) J Chem Soc Faraday Trans 2 81:949–961Google Scholar
  9. 5.
    Yamaguchi K, Yabushita S, Fueno T (1979) J Chem Phys 71;2321–2322Google Scholar
  10. 6.
    GAUSSIAN 82, Binkley JS, Frisch MJ, DeFrees DJ, Raghavachari K, Whiteside RA, Schlegel HB, Pople JA (1984), Carnegie-Mellon University, Pittsburgh, PA; IMS version registered by Koga NGoogle Scholar
  11. 7.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261; Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222Google Scholar
  12. 8.
    Buenker RJ (1982) In: Carbo R (ed) Studies in physicali and theoretical chemistry, vol 21. Elsevier, Amsterdam, p 17–34Google Scholar
  13. 9.
    Buenker RJ, Phillips RA (1985) J Mol Struct (Theochem) 123:291–300Google Scholar
  14. 10.
    Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33–58Google Scholar
  15. 11.
    Langhoff SR, Davidson ER (1974) Int J Quant Chem 8:61–72Google Scholar
  16. 12.
    Fueno T, Buenker RJ (1989) Theor Chim Acta 73:123–134Google Scholar
  17. 13.
    Melius CF, Binkley JB (1984) ACS Symp Ser 249; cited in Ref. [4]Google Scholar
  18. 14.
    Wadt WR, Goddard III WA (1975) J Am Chem Soc 97:3004–3021Google Scholar
  19. 15.
    Takane S, Fueno T, to be publishedGoogle Scholar
  20. 16.
    Johnston HS (1966) Gas phase reaction rate theory. Ronald Press, New York, p 40–47Google Scholar
  21. 17.
    Dean AM, Chou MS, Stern D (1984) Int J Chem Kinet 16:633–653Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Takayuki Fueno
    • 1
  • Keiichi Yokoyama
    • 1
  • Shin-ya Takane
    • 1
  1. 1.Department of Chemistry, Faculty of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations