Theoretica chimica acta

, Volume 83, Issue 1–2, pp 57–68

A comparative study of the bonding in heteroatom analogues of benzene

  • Nikita Matsunaga
  • Thomas R. Cundari
  • Michael W. Schmidt
  • Mark S. Gordon


Inorganic benzenes X3Y3H6 are investigated, with X and Y chosen from Zn, B, Al, Ga, C, Si, Ge, N, P, As, O, and S such that there are a total of 6 π electrons. Geometries and bond orders are used to qualitatively assess the degree of aromatic π bonding in these species. Bond orders are extracted from the CI density matrix over localized molecular orbitals, using methods pioneered by Ruedenberg. Second row elements C, N, O are found to be more effective at this bonding. The aromatic bonding is poorest when X and Y have a large electronegativity difference.

Key words

Benzene heteroatom analogues Bonding Bond orders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Power PP (1990) J Organomet Chem 400:49Google Scholar
  2. 2.
    Lagowski JJ (1977) Coord Chem Rev 22:185Google Scholar
  3. 3. a
    Barton TJ, Banasiak D (1977) J Am Chem Soc 99:5199Google Scholar
  4. 3. b
    Barton TJ, Burns GT (1978) J Am Chem Soc 100:5246Google Scholar
  5. 4.
    Baldridge KK, Gordon MS (1988) J Am Chem Soc 110:4024Google Scholar
  6. 5.
    Baldridge KK, Gordon MS (1984) J Organomet Chem 271:369Google Scholar
  7. 6.
    Clabo DA, Schaefer HF (1986) J Chem Phys 84:1664Google Scholar
  8. 7. a
    Nagase S, Teramae H, Kudo T (1987) J Chem Phys 86:4513Google Scholar
  9. 7. b
    Nagase S, Kudo T, Aoki M (1985) J Chem Soc, Chem Commun 1121Google Scholar
  10. 8.
    Baldridge KK, Boatz JA, Koseki S, Gordon MS (1987) Theoretical studies of silicon chemistry. in: Strauss HL, Babcock GT, Moore CB (eds) Ann Rev Phys Chem, Vol 38. Annual Reviews, Inc, Palo Alto, CA, p 211Google Scholar
  11. 9.
    Gordon MS (1986) Theoretical studies of multiple bonding to silicon. in: Liebman JF, Greenberg A (eds) Molecular structure and energetics, Vol 1. VCH Publ, Weinheim, p 101Google Scholar
  12. 10.
    Raabe G, Michl J (1985) Chem Rev 85:419Google Scholar
  13. 11.
    Edmiston C, Ruedenberg K (1966) Localized atomic and molecular orbitals. in: Löwdin PO (ed) Quantum theory of atoms, molecules, and the solid state. Academic Press, New York, p 263Google Scholar
  14. 12.
    England W, Salmon LS, Ruedenberg K (1971) Localized molecular orbitals: A bridge between chemical intuition and molecular quantum mechanics. in: Fortschritte der Chemischen Forschung, Vol 23. Springer-Verlag, New York, p 31Google Scholar
  15. 13.
    England W, Gordon MS (1969) J Am Chem Soc 91:6864Google Scholar
  16. 14.
    Boyd RJ, Choi SC, Hale CC (1984) Chem Phys Lett 112:136Google Scholar
  17. 15. a
    Dias HVR, Power PP (1987) Angew Chem, Int Ed Engl 99:1320Google Scholar
  18. 15. b
    Dias HVR, Power PP (1989) J Am Chem Soc 111:144Google Scholar
  19. 15. c
    Power P (1990) Angew Chem, Int Ed Engl 29:449Google Scholar
  20. 16. a
    Waggoner KM, Hope H, Power PP (1988) Angew Chem, Int Ed Engl 27:1699Google Scholar
  21. 16. b
    Waggoner KM, Power PP (1991) J Am Chem Soc 113:3385Google Scholar
  22. 17.
    Hope H, Pestana DC, Power PP (1991) Angew Chem, Int Ed Engl 30:691Google Scholar
  23. 18.
    Fink WH, Richards JC (1991) J Am Chem Soc 113:3393Google Scholar
  24. 19.
    Olmstead MM, Power PP, Shoner SC (1991) J Am Chem Soc 113:3379Google Scholar
  25. 20. a
    Noltes JG, Boersma J (1968) J Organomet Chem 12:425Google Scholar
  26. 20. b
    Coates GE, Ridley D (1966) J Chem Soc A 1064Google Scholar
  27. 21.
    Gorrell IB, Looney A, Parkin G, Rheingold AL (1990) J Am Chem Soc 112:4068Google Scholar
  28. 22.
    Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826Google Scholar
  29. 23. a
    Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki, S, Gordon MS, Nguyen KA, Windus TL, Elbert ST (1990) QCPE Bull 10:52Google Scholar
  30. 23. b
    Contact MISCHMID@VM1.NODAK.EDU concerning this program.Google Scholar
  31. 24. a
    B-O, Al-S: Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026Google Scholar
  32. 24. b
    Zn-Ge: Stevens WJ, Basch H, Krauss M, Jasien PG submitted to Can J ChemGoogle Scholar
  33. 25.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724Google Scholar
  34. 26. a
    standardd polarization exponents were used: B=0.6, C=N=O=0.8, Al=0.325, Si=0.395, P=0.55, S=0.65, Ga=0.207, Ge=0.246, As=0.293Google Scholar
  35. 26. b
    B: Binkley JS, Pople JA (1976) J Chem Phys 68:879Google Scholar
  36. 26. c
    C, N, O: Hariharan PC, Pople JA (1973) Theoret Chim Acta 28:213Google Scholar
  37. 26. d
    Al, P, S: Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Pople JA, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654Google Scholar
  38. 26. e
    Si: Gordon MS (1980) Chem Phys Lett 76:163Google Scholar
  39. 26. f
    Ga, Ge, As: Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, AmsterdamGoogle Scholar
  40. 27.
    Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71:41, 51, 65Google Scholar
  41. 28.
    Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457Google Scholar
  42. 29.
    Elbert ST, Cheung LM, Ruedenberg K (1980) National Resource for Computations in Chemistry Software Catalog, program QG01Google Scholar
  43. 30.
    Feller DF, Schmidt MW, Ruedenberg K (1982) J Am Chem Soc 104:960Google Scholar
  44. 31.
    Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:630Google Scholar
  45. 32.
    Schmidt MW, Truong PN, Gordon MS (1987) J Am Chem Soc 109:5217Google Scholar
  46. 33.
    Bartell LS, Higgenbotham HK (1965) J Chem Phys 42:851Google Scholar
  47. 34.
    Wiberg N, Wagner G, Müller G (1985) Angew Chem, Int Ed Engl 24:229Google Scholar
  48. 35.
    Lazroq M, Escudie J, Couret C, Satgé J, Dräger M, Dammel R (1988) Angew Chem, Int Ed Engl 27:828Google Scholar
  49. 36.
    Mayer H, Baum G, Massa W, Berndt A (1988) Angew Chem, Int Ed Engl 99:790Google Scholar
  50. 37.
    West R (1987) Angew Chem, Int Ed Engl 26:1201Google Scholar
  51. 38.
    Snow JT, Murakami S, Masamune S, Williams DJ (1984) Tetrahedron Lett 25:4191Google Scholar
  52. 39.
    Goldberg D, Hitchcock PB, Lappert MF, Thomas KN, Thorne AJ, Haaland A, Schilling BER (1986) Chem Soc, Dalton Trans 2387Google Scholar
  53. 40.
    Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796Google Scholar
  54. 41.
    Coulson CA (1961) Valence. Oxford Univ Press, London, p 267Google Scholar
  55. 42.
    Pauling L (1948) Nature of the chemical bond, 2nd ed. Cornell Univ Press, Ithaca NY, p 174Google Scholar
  56. 43.
    Streitweiser AJ (1961) MO theory for organic chemists. Wiley, New York, p 168Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Nikita Matsunaga
    • 1
  • Thomas R. Cundari
    • 1
  • Michael W. Schmidt
    • 1
  • Mark S. Gordon
    • 1
  1. 1.Department of ChemistryNorth Dakota State UniversityFargoUSA
  2. 2.Memphis State UniversityMemphisUSA

Personalised recommendations