Advertisement

Theoretica chimica acta

, Volume 83, Issue 5–6, pp 417–432 | Cite as

The evaluation of matrix elements for non-canonical Weyl tableau basis states adapted toU(n1+n2)⊃U(n1U(n2)

III. Recoupling procedures of the unitary group for double tensor operators
  • Hai-lun Lin
Article
  • 28 Downloads

Summary

In this paper, the recoupling procedure in the unitary group for double tensor operators is presented using the embedding for the three group chainsU(n=n1+n2)⊃U(n1U(n2);U(n1+2)⊃U(n1+1)⊃U(n1);U(n2+2)⊃U(n2+1)⊃U(n2). It is a new algorithm for the calculation of matrix elements ofU(n) generator products in partitioned bases.

Key words

Unitary group approach Recoupling procedures Weyl tableau basis states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moshinsky M (1963) J Math Phys 4:1128; (1968) Group theory and the many-body problem. Gordon and Breach, NYGoogle Scholar
  2. 2.
    Paldus J (1974) J Chem Phys 61:5321Google Scholar
  3. 3.
    Matsen FA (1974) Int J Quantum Chem Symp 8:379Google Scholar
  4. 4.
    Shavitt I (1977) J Quantum Chem Symp 11:131; (1978) 12:5Google Scholar
  5. 5.
    Downward MJ, Robb MA (1977) Theoret Chim Acta 46:129; Hegarty D, Robb MA (1979) Mol Phys 38:1795Google Scholar
  6. 6.
    Lin HL, Cao YF (1987) J Chem Phys 86:6325; (1988) J Chem Phys 89:3079Google Scholar
  7. 7.
    Born G, Shavitt I (1982) J Chem Phys 76:558Google Scholar
  8. 8.
    Paldus J, Jeziorski B (1988) Theoret Chim Acta 73:81Google Scholar
  9. 9.
    Zarrabian S, Sarma CR, Paldus J (1989) Chem Phys Lett 155:183Google Scholar
  10. 10.
    Siegbahnp, Heiberg A, Roos B, Levy B (1980) Phys Scripta 21:323Google Scholar
  11. 11.
    Matsen P A, Pauncz R (1986) The unitary group in quantum chemistry. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Lin HL, Cao YF (1988) Phys Rev A38:258; (1990) J Phys A 23:427Google Scholar
  13. 13.
    Paldus J, Gao MJ, Chen JQ (1987) Phys Rev A 35:3197PubMedGoogle Scholar
  14. 14.
    Gould MD, Paldus J (1986) Int J Quantum Chem 30:327; Gould MD (1986) Int J Quantum Chem 30:365Google Scholar
  15. 15.
    Lin HL (1991) Theoret Chim Acta 79:43, 53Google Scholar
  16. 16.
    Li X, Paldus J (1990) J Math Chem 4:295Google Scholar
  17. 17.
    Wybourne BG (1974) Classical groups for physicists. Wiley, NYGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Hai-lun Lin
    • 1
    • 2
  1. 1.Theoretical ChemistryUniversity of SiegenSiegenGermany
  2. 2.Department of ChemistryEast China Normal UniversityShanghaiChina

Personalised recommendations