Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Selection of a support for immobilization of a microbial lipase for the hydrolysis of triglycerides


Baterial lipase from Staphylococcus carnosus (pLipMut2) has been immobilized on various supports in order to determine a suitable immobilization technique in terms of activity and stability, when utilized for the hydrolysis of tributyrin. The hydrophobic materials PBA Eupergit and PBA Eupergit 250L prooved to be appropriate supports, when the enzyme was crosslinked with glutaraldehyde after adsorption. No desorption of the immobilized enzyme occured during operation. The pore size of the support has a strong effect on the activity but does not influence stability.

The initial activity for immobilized and soluble lipase is found to follow the Arrhenius equation at low temperature, where mass transfer does not affect reaction kinetics. Activation energies for soluble and immobilized lipase were evaluated to be 21.7 kJ mol−1 and 60.8 kJ mol−1, respectively.

Operational stability was studied in a packed bed recirculation reactor. Thermal desactivation followed first order kinetics with a half-life of 1340 h at 10°C. Model calculations for productivity showed, that optimal temperatures for high productivity are well below the temperature of maximal activity.

This is a preview of subscription content, log in to check access.


E a [kJ mol−1]:

activation energy

E d [kJ mol−1]:

activation energy of desactivation

H [−]:


k d [h−1]:

desactivation constant

k d, ∞ [h−1]:


k N [−]:

desactivation constant (number)

N [−]:

number of runs

p [mol dm−3]:


t [h]:


t 0.5 [h]:


T [K]:

absolute temperature

V [U ml−1]:


V(N) [Uml−1]:

activity exhibited in the n-th run

V s,O [U ml−1]:

initial activity of supernatant

V s, ∞ [U ml−1]:

activity of supernatant after immobilization

V O [U ml−1]:

initial activity

V [U ml−1]:


η imm [−]:

activity yield

φ [ml ml−1]:

ratio of volume of support to volume of supernatant


  1. 1.

    Wenzig, E.;Voit, H.;Götz, F.;Mersmann, A.: Overproduction of Staphylococcal Lipase by Genetical and Fermentativ Methods. DECHEMA Biotechnology Conferences 4 (1990) 311–314

  2. 2.

    Kimura, Y.;Tanaka, A.;Sonomoto, K.;Nihira, T.;Fukui, S.: Application of Immobilized Lipase to Hydrolysis of Triacylglyceride. Eur. J. Appl. Microbiol. Biotechnol. 17 (1983) 107–112

  3. 3.

    Kwon, D.Y.;Rhee, J.S.: Immobilization of Lipase for Fat Splitting. Kor. J. Chem. Eng. 1 (1984) 153–158

  4. 4.

    Carta, G.;Gainer, J.L.;Benton, A. H.: Enzymatic Synthesis of Esters Using an Immobilized Lipase. Biotechnol. Bioeng. 37 (1991) 1004–1009

  5. 5.

    Stark, M.-B.;Holmberg, K.: Covalent Immobilization of Lipase in Organic Solvents. Biotechnol. Bioeng. 34 (1989) 942–950

  6. 6.

    Brady, C.;Metcalfe, L.;Slaboszewski D.;Frank D.: Lipase Immobilized on a Hydrophobie, Microporous Support for the Hydrolysis of Fats. J. Am. Oil Chem. Soc. 65 (1988) 917–921

  7. 7.

    Hoq, M.M.;Yamane, T.;Shimizu, S.;Funada T.;Ishida S.: Continuous Hydrolysis of Olive Oil by Lipase in Microporous Hydrophobic Membrane Bioreactor. J. Am. Oil Chem. Soc. 62 (1985) 1016–1021

  8. 8.

    Lavayre, J.;Baratti, J.: Preparation and Properties of Immobilized Lipase. Biotechnol. Bioeng. 24 (1982) 1007–1013

  9. 9.

    Lie, E.;Molin, G.: Hydrolysis and Esterification with Immobilized Lipase on Hydrophobic and Hydrophilic Zeolites. J. Chem. Tech. Biotechnol. 50 (1991) 549–553

  10. 10.

    Shaw, J.-F.;Chang, R.-C.;Wang, F.F.;Wang, Y.J.; Lipolytic Activities of a Lipase Immobilized on Six Selected Supporting Materials. Biotechnol. Bioeng. 35 (1990) 132–137

  11. 11.

    Pronk, W.;Kerkhof, P.J.A.M.;van Helden, C.;van't Riet, K.: The Hydrolysis of Triglycerides by Immobilized Lipase in a Hydrophilic Membrane Reactor. Biotechnol. Bioeng. 32 (1988) 512–518

  12. 12.

    Yang, D.;Rhee, J.S.: Continuous Hydrolysis of Olive Oil by Immobilized Lipase in Organic Solvent. Biotechnol. Bioeng. 40 (1992) 748–752

  13. 13.

    Satoh, I.;Karube, I.;Suzuki, S.;Aikawa, K.: Neutral Lipid Sensor Based on Immobilized Lipase and a Flow-Through pH Electrode. Analytica Chim. Acta 106 (1979) 369–372

  14. 14.

    Hayashi, T.;Ikada, Y.: Lipoprotein Lipase Immobilization onto Polyacrolein Microspheres. Biotechnol. Bioeng. 36 (1990) 593–600

  15. 15.

    Kosugi, Y.;Tanaka, H.;Tomizuka, N.: Continuous Hydrolysis of Oil by Immobilized Lipase in a Countercurrent Reactor. Biotechnol. Bioeng. 36 (1990) 617–622

  16. 16.

    Voit, H.;Wenzig, E.;Mersmann, A.: Production of a Microbial Lipase by Staphylococcus carnosus (pLipMut2) in a Bubble Column and a Centrifugal Field Reactor. Bioprocess Engng. 6 (1991) 221–226

  17. 17.

    van Oort, M.G.;Deveer, A.;Deveer M.T.J.;Dijkman, R.;Tjeenk, M.L.;Verheij, H.M.;de Haas, G.H.;Wenzig, E.;Götz, F.: Purification and Substrate Specificity of Staphylococcus hyicus Lipase. Biochemistry 28 (1989) 9278–9285

  18. 18.

    Montero, S.;Blanco, A.;Virot, M.D.;Landeta, L.C.;Agud, I.;Solozabal, R.;Lascaray, J.M.;de Renobales M.;Llama M.J.;Serra J. L.: Immobilization of Candida rugosa Lipase and some Properties of the Immobilized Enzyme. Enzyme Microb. Technol. 15 (1993) 239–247

  19. 19.

    Pronk, W.;Boswinkel, G.;van't Riet, K.: Parameters Influencing Hydrolysis Kinetics of Lipase in a Hydrophilic Membrane Reactor. Enzyme Microb. Technol. 14 (1992) 214–220

  20. 20.

    Bell, G.;Todd, J.R.;Blain, J.A.;Patterson, J.D.E.;Shaw, C.E.L.: Hydrolysis of Triglycerides by Solid Phase Lipolytic Enzymes of Rhizopus arrhizus in Continuous Reactor Systems. Biotechnol. Bioeng. 23 (1981) 1703–1719

  21. 21.

    Taylor, F.;Panzer, C.C.;Craig, Jr. J.C.;O'Brien, D.J.: Continuous Hydrolysis of Tallow with Immobilized Lipase in a Microporous Membrane. Biotechnol. Bioeng. 28 (1986) 1318–1322

Download references

Author information

Correspondence to W. Warmuth.

Additional information

Financial support of this work by the Deutsche Forschungsgemeinschaft (SFB 145, A15) is gratefully acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Warmuth, W., Wenzig, E. & Mersmann, A. Selection of a support for immobilization of a microbial lipase for the hydrolysis of triglycerides. Bioprocess Engineering 12, 87–93 (1995).

Download citation


  • Hydrolysis
  • Activation Energy
  • Lipase
  • Triglyceride
  • Immobilization