Theoretica chimica acta

, Volume 85, Issue 6, pp 441–450 | Cite as

A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds

  • M. Dolg
  • H. Stoll
  • H. Preuss
Article

Summary

Improved energy-adjusted quasirelativistic pseudopotentials for lanthanoid atoms with fixed valency are presented and tested in molecular calculations for CeO, CeF, EuO, GdO, YbO, and YbF. The pseudopotential calculations treat the lanthanoid 4f shell as part of the core and yield accurate estimates for average bond lengths, vibrational frequencies and dissociation energies of all states belonging to a superconfiguration. Information for each individual state of the considered superconfiguration may be obtained from subsequent ligand field model calculations. The results of this combined pseudo-potential and ligand field approach (PPLFT) are compared to more accurate calculations with ab initio pseudopotentials that include the lanthanoid 4f orbitals explicitly in the valence shell and to available experimental data.

Key words

Lanthanoid elements Pseudopotentials Ligand field model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173Google Scholar
  2. 2.
    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730Google Scholar
  3. 3.
    Dolg M, Stoll H (1989) Theor Chim Acta 75:369Google Scholar
  4. 4.
    Dolg M, Stoll H, Savin A, Preuss (1989) in: Carbo R (ed) Quantum chemistry — basic aspects, actual trends studies in physical and theoretical chemistry, vol 62, p 265. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Field R (1982) Ber Bunsenges Phys Chem 86:771Google Scholar
  6. 6.
    Dolg M, Stoll H, Preuss H (1991) J Molec Struct (Theochem) 231:243Google Scholar
  7. 7.
    Dolg M, Stoll H, Preuss H (1990) Chem Phys 148:219Google Scholar
  8. 8.
    Dolg M, Stoll H, Preuss H (1990) Chem Phys Lett 174:208Google Scholar
  9. 9.
    Dolg M, Stoll H, Preuss H (1992) Chem Phys 165:21Google Scholar
  10. 10.
    Dolg M, Stoll H, Flad H-J, Preuss H (1992) J Chem Phys 97:1162Google Scholar
  11. 11.
    Langhoff SR, Davidson ER (1974) Int J Quant Chem 8:61Google Scholar
  12. 12.
    Linton C, Dulick M, Field RW, Carette P, Leyland PC, Barrow RF (1983) J Molec Spectrosc 102:441Google Scholar
  13. 13.
    Kotzian M, Rösch N, Zerner MC (1992) Theor Chim Acta 81:201Google Scholar
  14. 14.
    Kotzian M, Rösch N (1991) Eur J Solid State Inorg Chem 28:127Google Scholar
  15. 15.
    Froese Fischer C (1977) The Hartree-Fock method for atoms. Wiley, NY; program MCHF77, modified for pseudopotential and quasirelativistic calculations by Dolg M (1987)Google Scholar
  16. 16.
    Werner HJ, Knowles PJ, program system MOLPRO, cf.Google Scholar
  17. 16a.
    Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803;Google Scholar
  18. 16b.
    Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514Google Scholar
  19. 17.
    Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations, in: Physical Sciences Data, Vol 16, Elsevier, AmsterdamGoogle Scholar
  20. 18.
    Daudey JP, Malrieu JP, Daudey P, Pelissier M, Teichteil CH, programs PSHF, IJKL, FOK, CIPSI, CIPSO, cf.Google Scholar
  21. 18a.
    Huron B, Malrieu JP, Rancurel P (1973) J Chem Phys 58:5745;Google Scholar
  22. 18b.
    Teichteil CH, Pelissier M, Spiegelmann F (1983) Chem Phys 81:274;Google Scholar
  23. 18c.
    Pelissier M. Komiha N, Daudey JP (1988) J Comp Chem 9:298Google Scholar
  24. 19.
    Dunning TH (1970) J Chem Phys 53:2823Google Scholar
  25. 20.
    Dunning TH, Hay PJ (1977) in: Schaefer HF (ed) Modern theoretical chemistry, vol III, Methods of electronic stucture theory. Plenum, NYGoogle Scholar
  26. 21.
    Azuma Y, Childs WJ, Menningen KL (1991) J Molec Spectrosc 145:413Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Dolg
    • 1
  • H. Stoll
    • 1
  • H. Preuss
    • 1
  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgart 80Germany

Personalised recommendations