Mathematische Zeitschrift

, Volume 82, Issue 1, pp 8–28 | Cite as

On the ubiquity of Gorenstein rings

  • Hyman Bass
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auslander, M., andO. Goldman: Maximal orders. Trans. Amer. Math. Soc.97, 1–24 (1960).Google Scholar
  2. [2]
    Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc.95, 466–488 (1960).Google Scholar
  3. [3]
    —: Injective dimension in noetherian rings. Trans. Amer. Math. Soc.102, 18–29 (1962).Google Scholar
  4. [4]
    —: Torsion free and projective modules. Trans. Amer. Math. Soc.102, 319–327 (1962).Google Scholar
  5. [5]
    Berger, R.: Über eine Klasse unvergabelter lokaler Ringe. Math. Ann.166, 98–102 (1962).Google Scholar
  6. [6]
    Dade, E. C.: Some indecomposable group representations. Ann. of Math. (to appear).Google Scholar
  7. [7]
    Dieudonne, J.: Remarks on quasi-Frobenius rings. Ill. J. Math12, 346–354 (1958).Google Scholar
  8. [8]
    Gabriel, P.: Objects injectifs dans les catégories abéliennes. Sém. Dubreil 1958/59.Google Scholar
  9. [9]
    Gorenstein, D.: An arithmetic theory of adjoint plane curves. Trans. Amer. Math. Soc.72, 414–436 (1952).Google Scholar
  10. [10]
    Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki, May 1957.Google Scholar
  11. [11]
    Heller, A., andI. Reiner: Representations of cyclic groups in rings of integers. Ann. of Math. (to appear).Google Scholar
  12. [12]
    Jans, J.: Duality in noetherian rings. Proc. Amer. Math. Soc.12, 829–835 (1961).Google Scholar
  13. [13]
    Jans, J.: On finitely generated modules over noetherian rings. Trans. Amer. Math. Soc. (to appear).Google Scholar
  14. [14]
    Kaplansky, I.: Homological dimension of rings and modules, mimeographed notes. Univ. of Chicago.Google Scholar
  15. [15]
    Matlis, E.: Injective modules over noetherian rings. Pacific J. Math.8, 511–528 (1958).Google Scholar
  16. [16]
    —: Observations on noetherian domains of dimension 1. Can. J. Math.13, 569–586 (1961).Google Scholar
  17. [17]
    Northcott, D. G., andD. Rees: Principal systems. Quart. J. Math.8, 119–127 (1957).Google Scholar
  18. [18]
    Rees, D.: The grade of an ideal or module. Proc. Camb. Phil. Soc.53, 28–42 (1957).Google Scholar
  19. [19]
    Roquette, P.: Über den Singularitätsgrad von Teilringen in Funktionenkörpern. Math. Z.77, 228–240 (1961).Google Scholar
  20. [20]
    Samuel, P.: Singularités des variétés algébriques. Bull. Soc. Math. de France79, 121–129 (1951).Google Scholar
  21. [21]
    Serre, J.-P.: Groupes algébriques et corps de classes. Paris: Hermann 1959.Google Scholar
  22. [22]
    Serre, J.-P.: Sur les modules projectifs. Séminaire Dubreil, Nov. 1960/61.Google Scholar
  23. [23]
    Apéry, R.: La géométrie algébrique. Bull. Soc. Math. France71, 46–66 (1943).Google Scholar
  24. [24]
    Rosenlicht, M.: Equivalence relations on algebraic curves. Ann. of Math.56, 169–191 (1952).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • Hyman Bass
    • 1
  1. 1.Dept. of MathematicsColumbia UniversityNew York 27USA

Personalised recommendations