Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Heisenberg's commutation relations and Pontryagin's duality theorem

  • 44 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Godement, R.: Memoire sur la théorie des characters, dans les groupes localement compacts unimodulaire. J. Math. pures et appl.30, 1–110 (1951).

  2. [2]

    Hewitt, E., andK. A. Ross: Abstract harmonic analysis. Berlin-Göttingen-Heidelberg: Springer 1963.

  3. [3]

    Loomis L. H.: Abstract harmonic analysis. New York 1953.

  4. [4]

    — Note on a theorem of Mackey. Duke Math. J.19, 641–645 (1952).

  5. [5]

    Mackey, G. W. A theorem of Stone and von Neumann. Duke Math. J.16 313–326 (1949).

  6. [6]

    Nakamura, M., andH. Umegaki: Heisenberg's commutation relation and the Plancherel theorem. Proc. Japan Academy37, 239–242 (1961).

  7. [7]

    Segal, I. E. Equivalences of measure spaces. Amer. J. Math.73, 275–313 (1951).

  8. [8]

    Neumann, J. v.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann.104, 570–578 (1931).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sankaran, S. Heisenberg's commutation relations and Pontryagin's duality theorem. Math Z 98, 387–390 (1967). https://doi.org/10.1007/BF01112656

Download citation

Keywords

  • Commutation Relation
  • Duality Theorem