Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanical and thermal response of shock-consolidated Mar-M 200 rapidly-solidified powder

  • 42 Accesses

  • 16 Citations

Abstract

Consolidation of rapidly solidified Mar-M 200 powder was carried out successfully using the axi-symmetric and plane-wave (using contact explosives with normal incidence) geometries. However, cracking produced by reflected waves remains a major problem and considerable development work will be required until it can be eliminated. The ambient temperature ultimate compressive strength of the consolidated powder is approximately 2200 MPa. The change in micro-indentation hardness and microstructure as a function of isochronal anneals of one hour between 600 and 1200° C are presented. Ageing compact to optimum hardness (850° C/1 h) raises the ultimate compressive strength to 2250 MPa.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. F. Cline andR. W. Hopper,Scripta Metall. 11 (1977) 1137.

  2. 2.

    D. Raybould,J. Mater. Sci. 16 (1981) 589.

  3. 3.

    M. A. Meyers, B. B. Gupta andL. E. Murr,J. Met. 33 (1981) 21.

  4. 4.

    R. A. Prummer, in “Explosive Welding, Forming and Compaction”, edited by T. Z. Blazynski (Applied Science, London, 1982) Chap. 10, p. 369.

  5. 5.

    V. D. Linse (ed.), “Dynamic Compaction of Metal and Ceramic Powders”, NMAB-394 (National Academy Press, Washington, DC, 1983).

  6. 6.

    A. M. Staver, in “Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications”, edited by M. A. Meyers and L. E. Murr (Plenum, New York, 1981) p. 865.

  7. 7.

    M. L. Wilkins andC. F. Cline, “Simulation of Explosive Compaction Experiments”, Proceedings of the Explosive Fabrication Conference Soviet Academy of Sciences, Novoskibirsk, USSR, September, 1981, p. 166.

  8. 8.

    C. S. Yust andL. A. Harris, in “Shock Waves and High-Strain-Rate Phenomenon in Metals: Concepts and Applications”, edited by M. A. Meyers and L. E. Murr (Plenum, New York, 1981) p. 881.

  9. 9.

    D. G. Morris,Mater. Sci. Eng. 58 (1983) 187.

  10. 10.

    P. Kasiraj, T. Vreeland Jr, R. B. Schwarz andT. J. Ahrens, in “Shock Waves in Condensed Matter”, edited by J. R. Asay, R. A. Graham and G. K. Stranb (North Holland, Amsterdam, 1984) p. 439.

  11. 11.

    R. N. Orava, “Response of Nickel-Base Superalloys to Thermomechanical Processing by Shock-Wave Deformation”, DRI-U, of Denver, Report No. DRI-2638, US Naval Air Systems Command (1979).

  12. 12.

    M. A. Meyers andR. N. Orava,Met. Trans. 7A (1976) 179.

  13. 13.

    J. Gil Sevillano, P. Van Houtte andE. Aernoudt,Prog. Mater. Sci. 25 (1980) 69.

  14. 14.

    V. A. Phillips,Acta Metall. 14 (1966) 1533.

  15. 15.

    J. M. Oblak, W. A. Owkzarski andB. H. Kear,ibid. 19 (1971) 355.

  16. 16.

    S. N. Tewari,Met. Trans. 7A (1976) 1237.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyers, M.A., Pak, H. Mechanical and thermal response of shock-consolidated Mar-M 200 rapidly-solidified powder. J Mater Sci 20, 2133–2140 (1985). https://doi.org/10.1007/BF01112297

Download citation

Keywords

  • Polymer
  • Microstructure
  • Ambient Temperature
  • Explosive
  • Compressive Strength