Advertisement

Mathematische Zeitschrift

, Volume 92, Issue 5, pp 416–424 | Cite as

The closure operator in partial algebras with distributive operations. Applications to set algebra, measure theory and linear spaces

  • V. Baumann
  • J. Pfanzagl
Article

Keywords

Linear Space Measure Theory Closure Operator Partial Algebra Distributive Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, Bd. 1. Berlin: de Gruyter 1964.Google Scholar
  2. [1a]
    Cohn, P. M.: Universal Algebra. New York-London-Tokyo: Harper 1965.Google Scholar
  3. [2]
    Dörge, K., u.H. K. Schuff: Über Elimination in beliebigen Mengen mit allgemeinsten Operationen. Mathematische Nachrichten10, 315–330 (1953).Google Scholar
  4. [3]
    Dynkin, E. B.: Die Grundlagen der Theorie der Markoffschen Prozesse. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  5. [4]
    Halmos, P. R.: Measure theory. Princeton, New Jersey: van Nostrand 1950.Google Scholar
  6. [5]
    Haupt, O., G. Aumann u.C. Pauc: Differential- und Integralrechnung, Bd. 1. Berlin: de Gruyter 1948.Google Scholar
  7. [6]
    Kelley, J. L., I. Namioka and co-authors: Linear topological spaces. Princeton, New Jersey: van Nostrand 1963.Google Scholar
  8. [7]
    Loève, M.: Probability theory, 3rd ed. Princeton, New Jersey: van Nostrand 1963.Google Scholar
  9. [8]
    Loomis, L. H.: An introduction to abstract harmonic analysis. Princeton, New Jersey: van Nostrand 1953.Google Scholar
  10. [9]
    Schmidt, J.: Algebraic operations and algebraic independence in algebras with infinitary operations. Mathematica Japonicae of University of Osaka Prefecture6, 77–112 (1961/62).Google Scholar
  11. [9a]
    —: Über die Dimension einer partiellen Algebra mit endlichen oder unendlichen Operationen. Zeitschr. f. math. Logik u. Grundlagen d. Math.11, 227–239 (1965).Google Scholar
  12. [10]
    Słominski, J.: The theory of abstract algebras with infinitary operations. Rozprawy Matem.18, 1–67 (1959).Google Scholar
  13. [11]
    —: A theory of extension of quasi-algebras to algebras. Rozprawy Matem.40, 1–62 (1964).Google Scholar
  14. [12]
    Tarski, A.: Contributions to the theory of models I. Indagationes Mathematicae16, 572–581 (1954).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • V. Baumann
    • 1
  • J. Pfanzagl
    • 1
  1. 1.Mathematisches Institut der Universität zu Köln5 Köln-Lindenthal

Personalised recommendations