Advertisement

On the algebraic independence of the values of E-functions satisfying nonhomogeneous linear differential equations

  • Yu. V. Nesterenko
Article

Abstract

We prove a theorem which reduces the investigation of the algebraic independence of solutions of linear nonhomogeneous systems of differential equations to the investigation of homogeneous systems. We use this theorem to prove the algebraic independence of the values of certain E-functions.

Keywords

Differential Equation Linear Differential Equation Homogeneous System Algebraic Independence Nonhomogeneous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Siegel, “Uber einige Anwendungen Diophantischer Approximationen,” Abh. Preuss Acad. Wiss., No. 1, 1–70 (1929–1930).Google Scholar
  2. 2.
    A. B. Shidlovskii, “On a criterion for the algebraic independence of the values of a class of entire functions,” Dokl. Akad. Nauk, SSSR,100, No. 2, 221–224 (1955).Google Scholar
  3. 3.
    A. B. Shidlovskii, “On a criterion for the algebraic independence of the values of a class of entire functions,” Izv. Akad. Nauk SSSR, Ser. Matem,23, No. 1, 35–66 (1959).Google Scholar
  4. 4.
    A. B. Shidlovskii, “On the transcendence and the algebraic independence of the values of E-functions satisfying second order, linear, nonhomogeneous differential equations,” Dokl. Acad. Nauk SSSR,169, No. 1, 42–45 (1966).Google Scholar
  5. 5.
    A. B. Shidlovskii, The Transcendence of the Values of E-functions, Proc., Fourth All-Union Mathematical Congress, Leningrad, 1961 [in Russian], Vol. II, Izdat. “Nauka,” Leningrad (1964), 147–158.Google Scholar
  6. 6.
    B. L. van der Waerden, Moderne Algebra, Vol. II, Springer, Berlin (1937). [Russian translation], Moscow (1948).Google Scholar
  7. 7.
    I.I. Belogrivov, Candidate's Dissertation, Moscow (1967).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • Yu. V. Nesterenko
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations