Journal of Applied Electrochemistry

, Volume 1, Issue 2, pp 79–90 | Cite as

Parametric study of the anode of an implantable biological fuel cell

  • A. J. Appleby
  • D. Y. C. Ng
  • H. Weinstein
Papers

Abstract

In this paper, electrochemical oxidation of glucose at the concentration level present in human venous plasma is discussed, with the object of determining the feasibility of constructing an implantable fuel cell for powering a prosthetic heart. The model anode considered consists of a diffusing membrane, to prevent blood contact, backed by a porous electrode structure. The latter is assumed to consist of parallel tubular pores of length equal to the electrode thickness. The variation of membrane and electrode parameters and rate constants for glucose oxidation are considered as functions of reaction order and oxidation product under different flow conditions. It is shown that the least optimistic case, oxidation of glucose only to gluconic acid, is apparently marginally feasible.

Nomenclature

A

Area

CA

Concentration of glucose

C0

Total flux reference concentration

D

Diffusivity

F

Faraday's constant

G

Glucose conversion rate

i

Current density

k1

Dimensionless rate constant, zero-order reaction

K2

Dimensionless rate constant, first order reaction

k

Rate constant

ks

Surface-based rate constant

kv

Volume-based rate constant

l

Pore length

M

1/Pem

m

Reaction order

N

1Pep

n

Number of electrons in overall reaction

Pe

Mass transfer Peclet number

R

Gas constant

r

Radius

T

Temperature

t

Time, membrane thickness

U

Velocity

V

Potential, Volts

Vc

Catalyst volume

Vp

Pore volume

Vt

Total volume of electrode

x

Axial distance

y

Reduced concentration,CA/CO

Z

Dimensionless axial distance

Subscripts

i

interface

m

membrane, or in membrane pore

o

initial condition

p

pore, or in pore

Greek letters

α

Electrochemical transfer coefficient

ε

porosity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ‘Artificial Heart Devices and Systems: A Conceptual Phase Study’, Contract No. PH 43-65-1058, Stanford Research Institute (January 1966).Google Scholar
  2. [2]
    F. N. Huffman, R. J. Harvey, and S. S. Kitrilakis, ‘Design of an Implantable, Rankine-Cycle, Radio-isotope Power Source’. Paper presented at theIntersociety Energy Conversion Engineering Conference, Miami Beach, Florida (August 1967) p. 750.Google Scholar
  3. [3]
    M. Beltzer,J. Electrochem. Soc.,114 (1967) 1200.Google Scholar
  4. [4]
    R. F. Drake, ‘Implantable Fuel Cell For an Artificial Heart’,Proc. The Artificial Heart Program Conference, Washington, D.C. (June 1969) p. 869.Google Scholar
  5. [5]
    J. Batzold and M. Beltzer, ‘Feasibility Studies — Implantable Biological Fuel Cell’,ibid., p. 817.Google Scholar
  6. [6]
    A. Kozawa, V. E. Zilionis, R. J. Brodd, and R. A. Powers, ‘Search For a Specific Catalyst for Electrochemical Oxygen Reduction In Neutral NaCl Solution’,ibid., p. 849.Google Scholar
  7. [7]
    ‘Second Annual Summary Report: Implantable Fuel Cell For An Artificial Heart’, Contract No. PH 43-66-976, Monsanto Research Corporation, (July 1968).Google Scholar
  8. [8]
    A. J. Appleby, D. Y. C. Ng, S. K. Wolfson, Jr., and H. Weinstein, ‘An Implantable Biological Fuel Cell With An Air-Breathing Cathode’,Proc. 4th Intersociety Energy Conversion Engineering Conference, Washington, D.C. (September 1969) p. 346.Google Scholar
  9. [9]
    J. O'M. Bockris, B. J. Piersma and E. Gileadi,Electrochim. Acta,9 (1964) 1329.Google Scholar
  10. [10]
    M. L. B. Rao, and R. G. Drake,J. Electrochem. Soc.,116 (1969) 334.Google Scholar
  11. [11]
    W. J. Latimer, ‘Oxidation Potentials’, 2nd ed., Prentice Hall, New York (1952) p. 128.Google Scholar
  12. [12]
    C. W. Mansfield, ‘Oxidation and Reduction Potentials of Organic Systems’, Williams and Wilkins Co., Baltimore (1960).Google Scholar
  13. [13]
    A. J. Appleby and C. Van Drunen,J. Electrochem. Soc.,118 (1971) 95.Google Scholar
  14. [14]
    S. J. Yao, A. J. Appleby, A. Geisel, H. R. Cash, and S. K. Wolfson, Jr.,Nature,224 (1969) 921.PubMedGoogle Scholar
  15. [15]
    J. O'M. Bockris and H. Wroblowa,J. Electroanal. Chem.,7 (1964) 428.Google Scholar
  16. [16]
    A. T. Kuhn, H. Wroblowa, and J. O'M. Bockris,Trans. Faraday Soc.,63 (1967) 1458.Google Scholar
  17. [17]
    J. R. Pappenheimer and E. J. Landis, in ‘Handbook of Physiology’, Vol. II., p. 961–1034, P. Dow, Editor, American Physiological Society, Washington, D.C. (1963).Google Scholar
  18. [18]
    J. F. Wehner and R. H. Wilhelm,Chem. Eng. Sci.,6 (1956) 89.Google Scholar

Copyright information

© Chapman and Hall Ltd 1971

Authors and Affiliations

  • A. J. Appleby
  • D. Y. C. Ng
    • 1
  • H. Weinstein
    • 2
  1. 1.Institute of Gas TechnologyChicagoUSA
  2. 2.Chemical Engineering DepartmentIllinois Institute of TechnologyChicagoUSA

Personalised recommendations