Mathematische Zeitschrift

, Volume 128, Issue 4, pp 277–296 | Cite as

Mappings into loop spaces and central group extensions

  • Lawrence L. Larmore
  • Emery Thomas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartan, H.: Periodicité des groups d'homotopie stable des groups classiques, d'apres Bott. Séminaire Henri Cartan, Ecole N. Sup., 1959/60.Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press 1956.Google Scholar
  3. 3.
    Eilenberg, S., MacLane, S.: On the groupsH(π,n), II. Ann. of Math.70, 49–139 (1954).Google Scholar
  4. 4.
    Hilton, P.: Homotopy theory and duality. New York: Gordon and Breach 1965.Google Scholar
  5. 5.
    James, I., Thomas, E.: An approach to the enumeration problem. J. Math. Mech.14, 485–506 (1965).Google Scholar
  6. 6.
    Larmore, L.L., Thomas, E.: Group extensions and principal fibrations. Math. Scandinav., to appear.Google Scholar
  7. 7.
    Larmore, L.L., Thomas, E.: Group extensions and principal fibrations. Proceedings of the Advanced Study Institute on Alg. Topology, Aarhus, 1970, pp. 588–598.Google Scholar
  8. 8.
    Larmore, L.L., Thomas, E.: Group extensions and twisted cohomology theories. To appear in Illinois J. Math.Google Scholar
  9. 9.
    MacLane, S.: Homology. Berlin: Springer 1963.Google Scholar
  10. 10.
    Milnor, J.: Construction of universal bundles, I. Ann. of Math.63, 272–284 (1956).Google Scholar
  11. 11.
    Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966.Google Scholar
  12. 12.
    Whitehead, J.H.C.: A certain exact sequence. Annals of Math.52, 51–110 (1950).Google Scholar
  13. 13.
    Whitehead, J.H.C.: On simply-connected, 4-dimensional polyhedron. Commentarii Math. Helvet.22, 48–92 (1949).Google Scholar
  14. 14.
    Wu, W.T.: Les i-carrés dans une variété grassmannienne. C. R. Acad. Sci. Paris230, 918–920 (1950).Google Scholar
  15. 15.
    Yamanoshita, T.: On certain cohomological operations. J. Math. Soc. Japan8, 300–344 (1956).Google Scholar
  16. 16.
    Zassenhaus, H.: The theory of groups, 2nd Edition. New York: Chelsea Publishing Company 1958.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Lawrence L. Larmore
    • 1
  • Emery Thomas
    • 2
  1. 1.Department of MathematicsCalifornia State College at Dominguez HillsDominguez HillsUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations