Mathematische Zeitschrift

, Volume 128, Issue 4, pp 277–296 | Cite as

Mappings into loop spaces and central group extensions

  • Lawrence L. Larmore
  • Emery Thomas


Central Group Loop Space Group Extension Central Group Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartan, H.: Periodicité des groups d'homotopie stable des groups classiques, d'apres Bott. Séminaire Henri Cartan, Ecole N. Sup., 1959/60.Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press 1956.Google Scholar
  3. 3.
    Eilenberg, S., MacLane, S.: On the groupsH(π,n), II. Ann. of Math.70, 49–139 (1954).Google Scholar
  4. 4.
    Hilton, P.: Homotopy theory and duality. New York: Gordon and Breach 1965.Google Scholar
  5. 5.
    James, I., Thomas, E.: An approach to the enumeration problem. J. Math. Mech.14, 485–506 (1965).Google Scholar
  6. 6.
    Larmore, L.L., Thomas, E.: Group extensions and principal fibrations. Math. Scandinav., to appear.Google Scholar
  7. 7.
    Larmore, L.L., Thomas, E.: Group extensions and principal fibrations. Proceedings of the Advanced Study Institute on Alg. Topology, Aarhus, 1970, pp. 588–598.Google Scholar
  8. 8.
    Larmore, L.L., Thomas, E.: Group extensions and twisted cohomology theories. To appear in Illinois J. Math.Google Scholar
  9. 9.
    MacLane, S.: Homology. Berlin: Springer 1963.Google Scholar
  10. 10.
    Milnor, J.: Construction of universal bundles, I. Ann. of Math.63, 272–284 (1956).Google Scholar
  11. 11.
    Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966.Google Scholar
  12. 12.
    Whitehead, J.H.C.: A certain exact sequence. Annals of Math.52, 51–110 (1950).Google Scholar
  13. 13.
    Whitehead, J.H.C.: On simply-connected, 4-dimensional polyhedron. Commentarii Math. Helvet.22, 48–92 (1949).Google Scholar
  14. 14.
    Wu, W.T.: Les i-carrés dans une variété grassmannienne. C. R. Acad. Sci. Paris230, 918–920 (1950).Google Scholar
  15. 15.
    Yamanoshita, T.: On certain cohomological operations. J. Math. Soc. Japan8, 300–344 (1956).Google Scholar
  16. 16.
    Zassenhaus, H.: The theory of groups, 2nd Edition. New York: Chelsea Publishing Company 1958.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Lawrence L. Larmore
    • 1
  • Emery Thomas
    • 2
  1. 1.Department of MathematicsCalifornia State College at Dominguez HillsDominguez HillsUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations