Mathematische Zeitschrift

, Volume 128, Issue 1, pp 1–14 | Cite as

On groups with several doubly-transitive permutation representations

  • Peter J. Cameron


Permutation Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bercov, R. R.: The double transitivity of a class of permutation groups. Canadian J. Math.17, 480–493 (1965).Google Scholar
  2. 2.
    Kerdock, A. M.: A class of low-rate nonlinear binary codes. Inform. and Control20, 182–187 (1972).Google Scholar
  3. 3.
    Burnside, W.: Theory of groups of finite order. New York: Dover Publications (reprint) 1955.Google Scholar
  4. 4.
    Dembowski, P.: Finite geometries. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  5. 5.
    Itô, N.: Über die GruppenPSL n (q), die eine Untergruppe von Primzahlindex enthalten. Acta Sci. Math. (Szeged)21, 206–217 (1960).Google Scholar
  6. 6.
    Pollatsek, H.: Hirst cohomology groups of some linear groups over fields of characteristic two. Illinois J. Math.15, 393–417 (1971).Google Scholar
  7. 7.
    Wielandt, H.: Finite permutation groups. New-York-London: Academic Press 1964.Google Scholar
  8. 8.
    Wielandt, H.: On automorphisms of doubly-transitive permutation groups. Proc. Int. Conf. Theory of Groups (ed. L. G. Kovacs and B. H. Neumann), 389–393. New York: Gordon and Breach 1967.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Peter J. Cameron
    • 1
  1. 1.Merton CollegeOxfordEngland

Personalised recommendations