Mathematische Zeitschrift

, Volume 103, Issue 3, pp 239–258 | Cite as

Planes of ordern with collineation groups of ordern2

  • Peter Dembowski
  • T. G. Ostrom
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, A. A.: Finite noncommutative division algebras. Proc. Amer. Math. Soc.9, 928–932 (1958).Google Scholar
  2. 2.
    Baer, R.: Homogeneity of projective planes. Amer. J. Math.64, 137–152 (1942).Google Scholar
  3. 3.
    —: Polarities in finite projective planes. Bull. Amer. Math. So.52, 77–93 (1946).Google Scholar
  4. 4.
    —: Projectivities with fixed points on every line of the plane. Bull. Amer. Math. Soc.52, 373–286 (1946).Google Scholar
  5. 5.
    Bruck, R. H., andH. J. Ryser: The nonexistence of certain finite projective planes. Canad. J. Math.1, 88–93 (1949).Google Scholar
  6. 6.
    Dembowski, P.: Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen. Abh. Math. Sem. Univ. Hamburg29, 92–106 (1965).Google Scholar
  7. 7.
    Hall, M.: The theory of groups. New York: Macmillan 1959.Google Scholar
  8. 8.
    Hughes, D. R.: Collineations and generalized incidence matrices. Trans. Amer. Soc.86, 284–296 (1957).Google Scholar
  9. 9.
    Ostrom, T. G.: Finite planes with a single (p, L)-transitivity. Arch. Math.15, 378–384 (1964).Google Scholar
  10. 10.
    Panella, G.: Una classe di sistemi cartesiani. Atti Accad. Naz. Lincei Rend.38, 480–485 (1965).Google Scholar
  11. 11.
    Pickert, G.: Projektive Ebenen. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  12. 12.
    Rosati, L.: Su una nuova classe di piani grafici. Ric. Mat.13, 39–55 (1964).Google Scholar
  13. 13.
    Segre, S.: Ovals in a finite projective plane. Canad. J. Math.7, 414–416 (1955).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Peter Dembowski
    • 1
  • T. G. Ostrom
    • 2
  1. 1.Mathematisches Seminar der UniversitätFrankfurt a.M.
  2. 2.Department of MathematicsWashington State UniversityPullmanUSA

Personalised recommendations