Mathematische Zeitschrift

, Volume 103, Issue 2, pp 85–93 | Cite as

Vector fields on low dimensional manifolds

  • Emery Thomas


Vector Field Dimensional Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adem, J.: The iteration of the Steenrod squares in algebraic topology. Proc. Nat. Acad. Sci., U.S.A.38, 720–726 (1952).Google Scholar
  2. 2.
    Bredon, G., andA. Kosinski: Vector fields on π-manifolds. Annals of Math.84, 85–90 (1960).Google Scholar
  3. 3.
    Dold, A., andH. Whitney: Classification of oriented sphere bundles over a 4-complex. Annals of Math.69, 667–677 (1959).Google Scholar
  4. 4.
    Eckmann, B.: Systeme von Richtungsfeldern auf Sphären. Comment. Math. Helv.15, 1–26 (1943).Google Scholar
  5. 5.
    —, andP. Hilton: Operators and Cooperators in homotopy theory. Math. Ann.141, 1–21 (1960).Google Scholar
  6. 6.
    Hermann, R.: Secondary obstructions for fiber spaces. Bull. Amer. Math. Soc.65, 5–8 (1959).Google Scholar
  7. 7.
    Hirzebruch, H., andH. Hopf: Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten. Math. Annalen136, 156–172 (1958).Google Scholar
  8. 8.
    James, I. M., andE. Thomas: An approach to the enumeration problem..., Journ. Math. and Mech.14, 485–506 (1965).Google Scholar
  9. 9.
    Kervaire, M.: Courbure intégrale generalisée et homotopie. Math. Annalen131, 229–252 (1956).Google Scholar
  10. 10.
    Massey, W.: On the cohomology ring of a sphere bundle. Journ. Math. and Mech.7, 265–289 (1958).Google Scholar
  11. 11.
    Steenrod, N.: Products of cocyles and extensions of mappings Annals of Math.48, 290–320 (1947).Google Scholar
  12. 12.
    Stiefel, E.: Richtungsfelder und Fernparallelismus inn-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv.8, 305–353 (1936).Google Scholar
  13. 13.
    Thomas, E.: On the cohomology of the real Grassmann complexes. Trans. Amer. Math. Soc.96, 67–89 (1960).Google Scholar
  14. 14.
    —: Homotopy classification of maps by cohomology homomorphisms. Trans. Amer. Math. Soc.111, 138–151 (1964).Google Scholar
  15. 15.
    —: Cross-sections of stably equivalent vector bundles. Quart. J. Math. (2)17, 53–57 (1966).Google Scholar
  16. 16.
    Thomas, E.: Seminar on fiber spaces. Lecture Notes in Mathematics No. 13, Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  17. 17.
    —: Postnikov invariants and higher order cohomology operations. Annals of Math.85, 184–217 (1967).Google Scholar
  18. 18.
    —: The index of a tangent 2-field. Comment. Math. Helv.86, 110 (1967).Google Scholar
  19. 19.
    —: Real and Complex vector fields on manifolds. Journ. Math. and Mech.16, 1183–1206 (1967).Google Scholar
  20. 20.
    Thomas, E.: Fields of tangentk-planes on manifolds. (To appear.)Google Scholar
  21. 21.
    Thomas, E.: The span of a manifold. (To appear.)Google Scholar
  22. 22.
    Whitehead, G.: Homotopy properties of the real, orthogonal groups. Ann. of Math.43, 132–146 (1943).Google Scholar
  23. 23.
    Wu, W.: Classes caracteristique eti-carrés d'une variété. C. R. Acad. Sci. Paris230, 508–511 (1950).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Emery Thomas
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations