, Volume 10, Issue 3, pp 227–237 | Cite as

Spherical containment and the Minkowski dimension of partial orders

  • David A. Meyer


The recent work on circle orders generalizes to higher dimensional spheres. As spherical containment is equivalent to causal precedence in Minkowski space, we define the Minkowski dimension of a poset to be the dimension of the minimal Minkowski space into which the poset can be embedded; this isd if the poset can be represented by containment with spheresSd−2 and of no lower dimension. Comparing this dimension with the standard dimension of partial orders we prove that they are identical in dimension two but not in higher dimensions, while their irreducible configurations are the same in dimensions two and three. Moreover, we show that there are irreducible configurations for arbitrarily large Minkowski dimension, thus providing a lower bound for the Minkowski dimension of partial orders.

Mathematics Subject Classifications (1991)

06A06 52A37 

Key words

Causal order spherical (containment) order Minkowski dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Dushnik and E. W. Miller (1941) Partially ordered sets,Amer. J. Math. 63, 600–610.Google Scholar
  2. 2.
    D. Kelly and W. T. Trotter, Jr. (1982) Dimension theory for ordered sets, in I. Rival (ed.),Ordered Sets, Reidel, Boston, 171–211.Google Scholar
  3. 3.
    P. C. Fishburn (1985)Interval Orders and Interval Graphs: A Study of Partially Ordered Sets, Wiley, New York.Google Scholar
  4. 4.
    O. Ore (1962)The Theory of Graphs, Amer. Math. Soc. Colloq. Publ.38, AMS, Providence, Section 10.4.Google Scholar
  5. 5.
    M. C. Golumbic and E. R. Scheinerman (1989) Containment graphs, posets and related classes of graphs,Ann. N.Y. Acad. Sci. 555, 192–204.Google Scholar
  6. 6.
    E. R. Scheinerman and J. C. Wierman (1988) On circle containment orders,Order 4, 315–318.Google Scholar
  7. 7.
    J. B. Sidney, S. J. Sidney and J. Urrutia (1988) Circle orders,N-gon orders and the crossing number,Order 5, 1–10.Google Scholar
  8. 8.
    N. Alon and E. R. Scheinerman (1988) Degrees of freedom versus dimension for containment orders,Order 5, 11–16.Google Scholar
  9. 9.
    L. Bombelli, J. Lee, D. A. Meyer and R. D. Sorkin (1987) Space-time as a causal set,Phys. Rev. Lett. 59, 521–524; C. Moore (1988) Comment on ‘Space-time as a causal set’,Phys. Rev. Lett. 60, 655; L. Bombelli, J. Lee, D. A. Meyer and R. D. Sorkin (1988) reply to C. Moore inPhys. Rev. Lett. 60, 656; L. Bombelli (1987)Space-time as a Causal Set, Ph.D. Thesis (physics), Syracuse University; D. A. Meyer (1988)The Dimension of Causal Sets, Ph.D. Thesis (mathematics), M.I.T.Google Scholar
  10. 10.
    R. P. Stanley (1986)Enumerative Combinatorics. Volume I, Wadsworth and Brooks/Cole, Monterey, Chapter 3.Google Scholar
  11. 11.
    E. Scheinerman and G. Brightwell, private communications; G. Brightwell and P. Winkler (1989) Sphere orders,Order 6, 235–240.Google Scholar
  12. 12.
    D. A. Meyer (1988) The dimension of causal sets I: Minkowski dimension. Preprint, Syracuse University.Google Scholar
  13. 13.
    A. Rényi, C, Rényi and J. Surányi (1951) Sur l'independance des domaines simples dans i'espace Euclidean àn dimensions,Colloq. Mat. 2, 130–135; B. Grünbaum (1967)Convex Polytopes, Interscience, New York, 390–410.Google Scholar
  14. 14.
    G. Hemion (1988) A discrete geometry: speculations on a new framework for classical electrodynamics,Int. J. Theor. Phys. 27, 1145–1255.Google Scholar
  15. 15.
    L. Bombelli, private communication.Google Scholar
  16. 16.
    H. Komm (1948) On the dimension of partially ordered sets,Amer. J. Math. 70, 507–520.Google Scholar
  17. 17.
    T. Hiraguchi (1951) On the dimension of partially ordered sets,Sci. Rep. Kanazawa Univ. 1, 77–94; T. Hiraguchi (1955) On the dimension of orders,Sci. Rep. Kanazawa Univ. 4, 1–20; R. J. Kimble (1973)Extremal Problems in Dimension Theory for Partially Ordered Sets, Ph.D. Thesis (mathematics), M.I.T.; W. T. Trotter, Jr. (1974) Irreducible posets with large height exist,J. Comb. Theory (Ser. A) 17, 337–344; W. T. Trotter, Jr. (1975) Inequalities in dimension theory for posets,Proc. Amer. Math. Soc. 47, 311–316.Google Scholar
  18. 18.
    K. Kuratowski (1930) Sur le problème des courbes gauches en topologie,Fund. Math. 15, 271–283.Google Scholar
  19. 19.
    M. Paoli, W. T. Trotter, Jr. and J. W. Walker (1985) Graphs and orders in Ramsey theory and in dimension theory, in I. Rival, (ed.)Graphs and Order: The Role of Graphs in the Theory of Ordered Sets and Its Applications, Reidel, Boston, 351–394.Google Scholar
  20. 20.
    W. T. Trotter, Jr. and J. A. Ross (1984) Fort ≥ 3, everyt-dimensional partial order is a suborder of a (t + 1)-irreducible partial order, inFinite and Infinite Sets, Proceedings of the Hungarian Conference on Combinatories and Graph Theory, Eger, Hungary, 1981,Colloq. Math. Soc. Janos Bolyai, North-Holland, New York, 711–731.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • David A. Meyer
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseU.S.A.

Personalised recommendations