Mathematische Zeitschrift

, Volume 108, Issue 1, pp 15–32 | Cite as

Über das Spektrum positiver Operatoren

  • Heinrich P. Lotz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ando, T.: Positive linear operators in semi-ordered linear spaces. J. Fac. Sci. Hokkaido Univ. Ser. I.13, 214–228 (1957).Google Scholar
  2. 2.
    Bogolyubov, N., and S. Krein: On positive completely continuous operators. Acad. Sci. RSS Ukraine. Rec. Trav. (Zbirnik Prace) Inst. Math.6 (1946) [Ukrainisch].Google Scholar
  3. 3.
    Bonsall, F. F., and B. J. Tomiuk: The semi-algebra generated by a compact linear operator. Proc. Edinburgh Math. Soc.14 (S. II), 177–196 (1965).Google Scholar
  4. 4.
    Day, M. M.: Normed linear spaces. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  5. 5.
    Ellis, A. J.: Extreme positive operators. Quart. J. Math. Oxford Ser., (2)15, 342–344 (1964).Google Scholar
  6. 6.
    Fréchet, M.: Sur l'allure asymptotique de densités itérées dans le problème de probabilités ‘en chaine’. Bull. Soc. Math. France62, 68–83 (1934).Google Scholar
  7. 7.
    Frobenius, G.: Über Matrizen aus positiven Elementen. S.-B. Preuss. Akad. Wiss. Berlin1908, 471–476;1909, 514–518.Google Scholar
  8. 8.
    Probenius, G.: Über Matrizen aus nicht negativen Elementen. S.-B. Preuss. Akad. Wiss. Berlin1912, 456–477.Google Scholar
  9. 9.
    Hewitt, E., and K. A. Ross: Abstract harmonic analysis, I. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  10. 10.
    Halmos, P. R.: Lectures on ergodic theory. Tokyo: Math. Soc. Japan 1956.Google Scholar
  11. 11.
    —, and J. von Neumann: Operator methods in classical mechanics, II. Ann. of Math. (2)43, 332–350 (1942).Google Scholar
  12. 12.
    Jakobs, K.: Neuere Methoden und Ergebnisse der Ergodentheorie. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  13. 13.
    Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. of Math. (2)42, 994–1024 (1941).Google Scholar
  14. 14.
    Karlin, S.: Positive operators. J. Math. Mech.8, 907–938 (1955).Google Scholar
  15. 15.
    Köthe, G.: Topologische lineare Räume, I. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  16. 16.
    Krein, M. G., and M. A. Rutman: Linear operators leaving invariant a cone in a Banach space. Uspehi Mat. Nauk (N.S.)3, No. 1 (23), 3–95 (1948) [Russisch]. Auch A. M. S. Transl.26 (1950).Google Scholar
  17. 17.
    Niiro, F.: On indecomposable operators inl p (1<p<∞) and a problem of H. Schaefer. Sci. Papers College Gen. Educ. Univ. Tokyo14, 165–179 (1964).Google Scholar
  18. 18.
    —: On indecomposable operators inL p (1<p<∞) and a problem of H. H. Schaefer. Sci. Papers College Gen. Educ. Univ. Tokyo16, 1–24 (1966).Google Scholar
  19. 19.
    Perron, O.: Zur Theorie der Matrices. Math. Ann.64, 248–263 (1907).Google Scholar
  20. 20.
    Rickart, C. E.: General theory of Banach algebras. Princeton: van Nostrand 1960.Google Scholar
  21. 21.
    Rota, G.-C.: On the eigenvalues of positive operators. Bull. A. M. S.67, 556–558 (1961).Google Scholar
  22. 22.
    Schaefer, H. H.: Some spectral properties of positive linear operators. Pacific J. Math.10, 1009–1019 (1960).Google Scholar
  23. 23.
    —: Spektraleigenschaften positiver Operatoren. Math. Z.82, 303–313 (1963).Google Scholar
  24. 24.
    —: On the point spectrum of positive operators. Proc. A. M. S.15, 56–60 (1964).Google Scholar
  25. 25.
    —: Über das Randspektrum positiver Operatoren. Math. Ann.162, 289–293 (1965).Google Scholar
  26. 26.
    —: Topological vector spaces. New York: Macmillan 1966.Google Scholar
  27. 27.
    —: Eine Klasse irreduzibler positiver Operatoren. Math. Ann.165, 26–30 (1966).Google Scholar
  28. 28.
    Schaefer, H. H.: Invariant ideals of positive operators inC(X). Erscheint im Illinois J. Math.Google Scholar
  29. 29.
    Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642–648 (1950).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Heinrich P. Lotz
    • 1
  1. 1.Math. Institut der UniversitätTübingen

Personalised recommendations