Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Decomposition of modules

II. Rings without chain conditions

  • 58 Accesses

  • 17 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Amitsur, S. A.: General theory of radicals II: Radicals in rings and bicategories. Amer. J. Math.76, 100–125 (1954).

  2. 2.

    Cohn, P. M.: Non-commutative unique factorization domains. Trans. Amer. Math. Soc.109, 313–331 (1963).

  3. 3.

    Dickson, S. E.: A torsion theory for Abelian categories. Trans. Amer. Math. Soc.121, 223–235 (1966).

  4. 4.

    — Decomposition of modules I: Classical rings. Math. Zeitschrift90, 9–13 (1965).

  5. 5.

    Dickson, S. E.: Direct decompositions of radicals. Proceedings of the Conference on Categorical Algebra, La Jolla, California, June 1965, 366–374.

  6. 6.

    Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France90, 323–448 (1962).

  7. 7.

    Kurosch, A. G.: Radicals in rings and algebras. Mat. Sb. (N.S..)33 (75), 13–26 (1953) [Russian].

  8. 8.

    Maranda, J. M.: Injective structures. Trans. Amer. Math. Soc.110, 98–135 (1964).

  9. 9.

    Matlis, E.: Modules with descending chain condition. Trans. Amer. Math. Soc.97, 495–508 (1960).

  10. 10.

    Northcott, D. G.: An introduction to homological algebra. Cambridge University Press 1960.

  11. 11.

    Northcott, D. G. Ideal theory. Cambridge tract no. 42, 1960.

  12. 12.

    Van Der Waerden: Modern Algebra, vol. II (Eng. transl.). New York: Ungar 1950.

  13. 13.

    Walker, C. L., andE. A. Walker: Quotient categories and rings of quotiets (to appear).

  14. 14.

    Walker, E. A.: Quotient categories and quasi-isomorphisms of abelian groups. Proceedings of the Colloquium on Abelian Groups, Tihany, Hungary, Sept. 1963, 147–162.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dickson, S.E. Decomposition of modules. Math Z 104, 349–357 (1968). https://doi.org/10.1007/BF01110426

Download citation