Advertisement

Mathematische Zeitschrift

, Volume 100, Issue 5, pp 380–395 | Cite as

A generalization of André's systems

  • David A. Foulser
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Albert, A. A.: Finite division algebras and finite planes. Proc. of Symposia in Applied Math. (Amer. Math. Soc.), vol.10, 53–70 (1960).Google Scholar
  2. [2]
    André, Johannes: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z.60, 156–186. (1954).Google Scholar
  3. [3]
    — Projektive Ebenen über Fastkörpern. Math. Z.62, 137–160 (1955).Google Scholar
  4. [4]
    — Über verallgemeinerte Moulton-Ebenen. Arch. Math.13, 290–301 (1962).Google Scholar
  5. [5]
    — Über Perspektivitäten in endlichen projektiven Ebenen. Arch. Math.6, 29–32 (1954).Google Scholar
  6. [6]
    Artin, E.: The orders of the linear groups. Communications on Pure and Applied Math.8, 355–366 (1955).Google Scholar
  7. [7]
    Bruck, R. H.: Contributions to the theory of loops. Trans. Amer. Math. Soc.60, 245–254 (1946).Google Scholar
  8. [8]
    Foulser, D. A.: The flag transitive collineation groups of the finite non-Desarguesian affine planes. Canadian J. Math.16, 443–472 (1964).Google Scholar
  9. [9]
    Hall, Marshall jr.: The theory of groups. New York 1959.Google Scholar
  10. [10]
    Hughes, D. R.: Collineation groups of non-Desarguesian planes I. Amer. Journal of Math.81, 921–938 (1959).Google Scholar
  11. [11]
    — Review of some results in collineation groups. Proc. of a Symposium in Pure Math. (Amer. Math. Soc.)1, 42–55 (1959).Google Scholar
  12. [12]
    Le Veque, William: Topics in number theory, vol. 1. Reading, Mass. 1956.Google Scholar
  13. [13]
    Ostrom, T. G.: Translation planes and configurations in Desarguesian planes. Arch. Math.6, 457–464 (1960).Google Scholar
  14. [14]
    Pickert, Günter: Projektive Ebenen. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  15. [15]
    Pierce, W. A.: Moulton planes. Canadian Journal of Math.13, 427–436 (1961).Google Scholar
  16. [16]
    — Collineations of affine Moulton planes. Can. J. Math.16, 46–62 (1964).Google Scholar
  17. [17]
    — Collineations of projective Moulton planes. Can. J. Math.16, 637–656 (1964).Google Scholar
  18. [18]
    Pierce, W. A. Various unpublished sketches of recent results. June, August, September, and November 1965.Google Scholar
  19. [19]
    Zassenhaus, Hans: Über endliche Fastkörper. Abh. Math. Seminar Univ. Hamburg11, 187–220 (1935).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • David A. Foulser
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations