Mathematische Zeitschrift

, Volume 118, Issue 2, pp 115–138 | Cite as

Whitney-Cartan product formulae

  • Emery Thomas


Product Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adem, J.: The relations on Steenrod powers of cohomology classes. Algebraic geometry and topology, p. 191–238. Princeton: University Press 1967.Google Scholar
  2. 2.
    James, I. M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech.3, 485–506 (1965).Google Scholar
  3. 3.
    MacLane, S.: Homology. New York: Academic Press 1963.Google Scholar
  4. 4.
    Mahowald, M.: On obstruction theory in orientable fiber bundles. Trans. Amer. Math. Soc.110, 315–349 (1964).Google Scholar
  5. 5.
    Massey, W., Peterson, F.: Cohomology structure of certain fiber spaces I. Topology4, 47–66 (1964).Google Scholar
  6. 6.
    Milgram, J.: Cartan formulae (to appear).Google Scholar
  7. 7.
    Mosher, R.: Secondary characteristic classes fork-special bundles. Trans. Amer. Math. Soc.131, 333–344 (1968).Google Scholar
  8. 8.
    —: The product formula for the third obstruction. Pacific J. Math.27, 573–578 (1968).Google Scholar
  9. 9.
    Peterson, F., Stein, N.: Secondary characteristic classes. Ann. of Math.76, 510–523 (1962).Google Scholar
  10. 10.
    Serre, J. P.: Homologie singulière des espaces fibrés. Ann. of Math.54, 425–505 (1951).Google Scholar
  11. 11.
    Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966.Google Scholar
  12. 12.
    Steenrod, N., Epstein, D.: Cohomology operations. Ann. of Math. Studies No. 50, Princeton Univ. Press 1962.Google Scholar
  13. 13.
    Thom, R.: Espaces fibrés en sphères et carrés de Steenrod. Ann. Ecole Norm. Sup.69, 109–182 (1952).Google Scholar
  14. 14.
    Thomas, E.: Seminar on fiber spaces. Lecture notes in Mathematics No. 13. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  15. 15.
    Thomas, E.: An exact sequence for principal fibrations. Bol. Soc. Mat. Mexicana 35–45 (1967).Google Scholar
  16. 16.
    —: Postnikov invariants and higher order cohomology operations. Ann. of Math.85, 184–217 (1967).Google Scholar
  17. 17.
    Whitehead, G.: Generalized homology theories. Trans. Amer. Math. Soc.102, 227–283 (1962).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Emery Thomas
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations