Mathematische Zeitschrift

, Volume 122, Issue 2, pp 166–176 | Cite as

Demi-semi-primal algebras and Mal'cev-type conditions

  • Robert W. Quackenbush


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Day, R. A.: A characterization of modularity for congruence lattices of algebras. Canadian Math. Bull.12, 167–173 (1969).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Day, R. A.: Injectivity in congruence distributive equational classes. Ph. D. Thesis, McMaster Univ., 1970.Google Scholar
  3. 3.
    Foster, A. L.: Families of algebras with unique (sub-)direct factorization: Equational characterization of factorization. Math. Ann.166, 302–326 (1966).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    —: Automorphisms and functional completeness in universal algebras. I. General automorphisms, Structure theory and characterization. Math. Ann.180, 138–169 (1969).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    — Pixley, A. F.: Semi-categorical algebras. I. Semi-primal algebras. Math. Z.83, 147–169 (1964).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    ——: Semi-categorical algebras. II. Math. Z.85, 169–184 (1964).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fraser, G., Horn, A.: Congruence relations in direct products. Proc. Amer. Math. Soc.26, 390–394 (1970).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Grätzer, G.: Universal algebra. Princeton, N.J.: D. Van Nostrand Co. 1968.MATHGoogle Scholar
  9. 9.
    —: Two Mal'cev-type theorems in universal algebra. J. Combinat. Theory8, 334–342 (1970).CrossRefMATHGoogle Scholar
  10. 10.
    Halmos, P. R.: Algebraic logic. New York: Chelsea Publishing Co. 1962.MATHGoogle Scholar
  11. 11.
    Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scandinav.21, 110–121 (1967).MathSciNetMATHGoogle Scholar
  12. 12.
    Mal'cev, A. I.: On the general theory of algebraic systems [Russian]. Mat. Sbornik, N.S.35, (77) 3–20 (1954).MathSciNetGoogle Scholar
  13. 13.
    Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. Math. Soc.14, 105–109 (1963).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    —: Functionally complete algebras generating distributive and permutable classes. Math. Z.114, 361–372 (1970).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pixley, A. F.: The ternary discriminator function in universal algebra. Preprint.Google Scholar
  16. 16.
    Pixley, A. F.: Local Mal'cev conditions. To appear.Google Scholar
  17. 17.
    Wille, R.: Kongruenzklassengeometrien. Lecture Notes in Math. 113. Berlin-Heidelberg-New York: Springer 1970.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Robert W. Quackenbush
    • 1
  1. 1.Department of MathematicsThe University of ManitobaWinnipegCanada

Personalised recommendations