Mathematische Zeitschrift

, Volume 116, Issue 3, pp 183–190 | Cite as

The changes of sign of fractional integrals

  • John Steinig


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosanquet, L. S.: Some extensions of M. Riesz's mean value theorem. Indian J. Math.9, 65–90 (1967).Google Scholar
  2. 2.
    — A functional equation related to Riesz's mean value theorem. Publ. Ramanujan Inst. (Madras)1, 47–69 (1969).Google Scholar
  3. 3.
    Chandrasekharan, K., Minakshisundaram, S.: Typical means. Oxford University Press (Bombay), 1952.Google Scholar
  4. 4.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of integral transforms (Bateman manuscript project), vol. II. New York: McGraw-Hill, 1954.Google Scholar
  5. 5.
    Hardy, G. H., Riesz, M.: The general theory of Dirichlet's series. Cambridge Tract No. 18, 1915.Google Scholar
  6. 6.
    Isaacs, G. L.: M. Riesz's mean value theorem for infinite integrals. J. London Math. Soc.28, 171–176 (1953).Google Scholar
  7. 7.
    Riesz, M.: Sur un théorème de la moyenne et ses applications. Acta litt. ac sci. reg. Univ. Fr.-Jos. Szeged (sectio sc. math.)1, 114–126 (1923).Google Scholar
  8. 8.
    Steinig, J.: The real zeros of Struve's function. (To appear in SIAM J. Math. Anal.)Google Scholar
  9. 9.
    Tricomi, F. G.: Integral equations. New York: Interscience, 1957.Google Scholar
  10. 10.
    Verblunsky, S.: On the limit of a function at a point. Proc. London Math. Soc. (2)32, 163–199 (1931).Google Scholar
  11. 11.
    Watson, G. N.: A treatise on the theory of Bessel functions (2nd edition). Cambridge University Press, 1944.Google Scholar
  12. 12.
    Tables of Bessel functions of fractional order, vol. I. Columbia University Press, 1948.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • John Steinig
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations