Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The ideal transform and overrings of an integral domain

  • 51 Accesses

  • 12 Citations

This is a preview of subscription content, log in to check access.


  1. 1.

    Gilmer, R. W., Jr.: A class of domains in which primary ideals are valuation ideals. Math. Ann.161, 247–254 (1965).

  2. 2.

    —, and W. J. Heinzer: Overrings of Prüfer domains. II. J. Algebra7, 281–301 (1967).

  3. 3.

    ——: Intersections of quotient rings of an integral domain. J. Math. Kyoto Univ.7, 133–150 (1967).

  4. 4.

    Gilmer, R. W., Jr., and W. J. Heinzer: On the number of generators of an invertible ideal. (Submitted for publication).

  5. 5.

    Nagata, M.: On the derived normal rings of Noetherian integral domains. Mem. Coll. Sci. Kyoto Univ.29, 293–303 (1955).

  6. 6.

    —: A treatise on the 14th problem of Hilbert. Mem. Coll. Sci. Kyoto Univ.30, 57–82 (1956).

  7. 7.

    Nagata, M.: Some sufficient conditions for the fourteenth problem of Hilbert. Actas Del Coloquio Internac. Sobre Geometria Algebraica, p. 107–121, 1965.

  8. 8.

    —: Local rings. New York: Interscience 1962.

  9. 9.

    Ohm, J.: Integral closure and (x,y)n=(xn,yn). Monatsh. für. Math.71, 32–39 (1967).

  10. 10.

    Zariski, O., and P. Samuel. Commutative algebra, vol. I. Princeton, New Jersey: Van Nostrand 1958.

  11. 11.

    ——. Commutative algebra, vol. II. Princeton, New Jersey: Van Nostrand 1960.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brewer, J. The ideal transform and overrings of an integral domain. Math Z 107, 301–306 (1968). https://doi.org/10.1007/BF01110018

Download citation


  • Integral Domain