Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Weak holonomy groups

  • 135 Accesses

  • 52 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alekseevskij, D. V.: On holonomy groups of Riemannian manifolds. Ukrain. Math. Žurn.19, 100–104 (1967).

  2. 2.

    Ambrose, W., Singer, I. M.: A theorem on holonomy. Trans. Amer. Math. Soc.75, 428–433 (1953).

  3. 3.

    Berger, M.: Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniens. Bull. Soc. Math. France83, 279–330 (1955).

  4. 4.

    Berger, M.: Sur les variétés d'Einstein compactes. C.R. IIIe Reunion Math. Expression Latine, Namur (1965), 35–55.

  5. 5.

    —: Trois remarques sur les variétés riemannienes à courbure positive. C.R. Acad. Sci. Paris263, 76–78 (1966).

  6. 6.

    Bonan, E.: Sur des variétés riemanniennes à groupe d'holonomieG 2 ou Spin (7). C.R. Acad. Sci. Paris262, 127–129 (1966).

  7. 7.

    Gray, A.: A note on Riemannian manifolds with holonomy group Sp(n)·Sp(1). Michigan Math. J.16, 125–128 (1969).

  8. 8.

    —: Vector cross products on manifolds. Trans. Amer. Math. Soc.141, 465–504 (1969).

  9. 9.

    —: Nearly Kähler manifolds. J. Differential Geometry4, 283–310 (1970).

  10. 10.

    —, Green, P.: Sphere transitive structures and the triality automorphism. Pacific. J. Math.34, 83–96 (1970).

  11. 11.

    Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. of Math.44, 454–470 (1943).

  12. 12.

    Simons, J.: On transitivity of holonomy systems. Ann. of Math.76, 213–234 (1962).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gray, A. Weak holonomy groups. Math Z 123, 290–300 (1971). https://doi.org/10.1007/BF01109983

Download citation

Keywords

  • Holonomy Group
  • Weak Holonomy
  • Weak Holonomy Group