Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Primal extensions of universal algebras

  • 21 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

Bibliography

  1. Foster, A. L. [59]: An existence theorem for functionally complete universal algebras. Math. Z.71, 69–82 (1959).

  2. Grätzer, G. [68]: Universal algebra. Princeton, New Jersey: Van Nostrand 1968.

  3. Piccard, S. [35]: Sur les fonctions definies dans les ensembles finie quelconque. Fundamenta Math.24, 298–301 (1935).

  4. Post, E. L. [21]: Introduction to a general theory of elementary propositions. Amer. J. Math.43, 163–185 (1921).

  5. Salomaa, A. [60]: A theorem concerning the composition of functions of several variables ranging over a finite set. J. Symbolic Logic25, 203–208 (1960).

  6. Salomaa, A. [63]: On basic groups for the set of functions over a finite domain. Ann. Acad. Sci. Fennicae, Ser. A I 338, 15 (1963).

  7. Sioson, F. M. [60]: Some primal clusters. Math. Z.75, 201–210 (1960).

  8. Słupecki, J. [39]: A criterion of fullness of many-valued logic [Polis]]. C. R. Soc. Sci. Varsovie32, 102–110 (1939).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arthur Knoebel, R. Primal extensions of universal algebras. Math Z 115, 53–57 (1970). https://doi.org/10.1007/BF01109748

Download citation

Keywords

  • Primal Extension
  • Universal Algebra