Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Flat modules, injective modules and quotient rings

  • 70 Accesses

  • 27 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Akiba, T.: Remarks on generalized rings of quotients. III. J. Math. Kyoto Univ.9, 205–212 (1969).

  2. 2.

    Bourbaki, N.: Algébre commutative, Chap. 1 et 2. Paris: Hermann 1961.

  3. 3.

    Gabriel, P.: Des catégories abeliennes. Bull. Soc. Math. France90, 323–448 (1962).

  4. 4.

    Lambek, J.: On Utumi's ring of quotients. Canadian J. Math.15, 363–370 (1963).

  5. 5.

    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku. Sect. A6, No. 150, 83–142 (1958).

  6. 6.

    —: Localizations in categories of modules. I. Math. Z.114, 121–144 (1970).

  7. 7.

    Morita, K.: Localizations in categories of modules. III. To appear in Math. Z.

  8. 8.

    Nästäsescu, C., Popescu, N.: On the localization ring of a ring. J. Algebra15, 41–56 (1970).

  9. 9.

    Popescu, N., Spircu, T.: Sur les epimorphismes plats d'anneaux. C. R. Acad. Sci. Paris268, 376–379 (1969).

  10. 10.

    Silver, L.: Noncommutative localizations and applications. J. Algebra7, 44–76 (1967).

  11. 11.

    Tachikawa, H.: Double centralizers and dominant dimensions. Math. Z.116, 79–88 (1970).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morita, K. Flat modules, injective modules and quotient rings. Math Z 120, 25–40 (1971). https://doi.org/10.1007/BF01109715

Download citation

Keywords

  • Injective Module
  • Quotient Ring
  • Flat Module