, Volume 11, Issue 4, pp 317–341 | Cite as

Towards the reconstruction of posets

  • Dieter Kratsch
  • Jean-Xavier Rampon


The reconstruction conjecture for posets is the following: “Every finite posetP of more than three elements is uniquely determined — up to isomorphism — by its collection of (unlabelled) one-element-deleted subposets 〈P−{x}:xV(P)〉.”

We show that disconnected posets, posets with a least (respectively, greatest) element, series decomposable posets, series-parallel posets and interval orders are reconstructible and that N-free orders are recognizable.

We show that the following parameters are reconstructible: the number of minimal (respectively, maximal) elements, the level-structure, the ideal-size sequence of the maximal elements, the ideal-size (respectively, filter-size) sequence of any fixed level of the HASSE-diagram and the number of edges of the HASSE-diagram.

This is considered to be a first step towards a proof of the reconstruction conjecture for posets.

Mathematics Subject Classification (1991)


Key words

Reconstruction Kelly lemma reconstructible parameter classes of posets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Berge (1985)Graphs, North-Holland, Amsterdam.Google Scholar
  2. 2.
    J. A. Bondy (1991) A graph reconstructor's manual,Surveys in Combinatorics, Proceedings of the 13th British Combinatorial Conference, pp. 221–252.Google Scholar
  3. 3.
    J. A. Bondy and R. L. Hemminger (1977) Graph reconstruction — a survey,J. Graph Theory 1, 227–268.Google Scholar
  4. 4.
    V. Bouchitté and M. Habib (1989) The calculation of invariants of ordered sets, in: I. Rival, (ed.),Algorithms and Order, Kluwer Acad. Publ., Dordrecht, pp. 231–279.Google Scholar
  5. 5.
    D. G. Corneil, H. Lerchs, and L. Stewart Burlingham (1981) Complement reducible graphs,Discrete Appl. Math. 3, 163–174.Google Scholar
  6. 6.
    S. K. Das (1979) Reconstruction of a class of finite acyclic digraphs,Graph Theory, Proc. Symp. Calcutta 1976, ICI Lecture Notes4, 163–173.Google Scholar
  7. 7.
    S. K. Das (1980) Set-reconstruction of chain sizes in a class of finite topologies,Combinatorics and Graph Theory, Proc. Symp. Calcutta 1980, Lecture Notes in Mathematics885, 227–236.Google Scholar
  8. 8.
    S. K. Das (1981) Some studies in the theory of finite topologies, Ph.D. Thesis, University of Calcutta.Google Scholar
  9. 9.
    M. C. Golumbic (1980)Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York.Google Scholar
  10. 10.
    F. Harary (1964) On the reconstruction of a graph from its collection of subgraphs,Theory of Graphs and its Applications, Prague, pp. 47–52.Google Scholar
  11. 11.
    F. Harary (1969)Graph Theory, Addison-Wesley, Massachusetts.Google Scholar
  12. 12.
    F. Harary (1974) A survey of the reconstruction conjecture,Graphs and Combinatorics, LNM 406, Springer, Berlin, pp. 18–28.Google Scholar
  13. 13.
    S. Hyyrö (1968) Einige Bemerkungen über Rekonstruktion des Graphen aus seinen Untergraphen,Ann. Univ. Turku, Ser. AI 118, no. 7, 7 pp.Google Scholar
  14. 14.
    P. J. Kelly (1957) A congruence theorem for trees,Pacific J. Math. 7, 961–968.Google Scholar
  15. 15.
    D. Kratsch and L. Hemaspaandra (1994) On the complexity of graph reconstruction,Math. Systems Theory 27, 257–273.Google Scholar
  16. 16.
    D. Kratsch and J. X. Rampon (1994) A counterexample about reconstruction of posets, to appear inOrder.Google Scholar
  17. 17.
    R. H. Möhring (1989) Computationally tractable classes of ordered sets, in: I. Rival (ed.),Algorithms and Order, Kluwer Acad. Publ., Dordrecht, pp. 105–193.Google Scholar
  18. 18.
    C. St. J. A. Nash-Williams (1978) The reconstruction problem, in:Selected Topics in Graph Theory, Vol. 1, New York, pp. 205–236.Google Scholar
  19. 19.
    M. Pouzet (1979) Relation non reconstructible par leurs restrictions,J. Compinatorial Theory (B),26, 22–34.Google Scholar
  20. 20.
    P. K. Stockmeyer (1977) The falsity of the reconstruction conjecture for tournaments,J. Graph Theory 1, 19–25.Google Scholar
  21. 21.
    W. T. Trotter (1992)Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  22. 22.
    S. M. Ulam (1960)A Collection of Mathematical Problems, Interscience Publisher, New York.Google Scholar
  23. 23.
    B. Sands (1985) Unsolved problems,Order 1, 311–313.Google Scholar
  24. 24.
    M. von Rimscha (1983) Reconstructibility and perfect graphs,Discrete Math. 47, 79–90.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Dieter Kratsch
    • 1
  • Jean-Xavier Rampon
    • 2
  1. 1.Fakultät für Mathematik und InformatikF.-Schiller-UniversitätJenaGermany
  2. 2.IRISARennes CédexFrance

Personalised recommendations