Journal of Materials Science

, Volume 23, Issue 11, pp 4004–4012 | Cite as

SrTiO3 glass ceramics

Part II Dielectric properties
  • S. L. Swartz
  • A. S. Bhalla
  • L. E. Cross
  • W. N. Lawless
Article

Abstract

The dielectric properties of the strontium titanate aluminosilicate glass-ceramics described in the previous paper have been investigated over the frequency range of 10 to 1000 kHz and temperature range of −170 to 200° C. The dielectric properties were strongly dependent on the crystallization conditions, which determined the amounts of SrTiO3 and secondary crystalline phases, and the microstructure of the glass-ceramics. Room temperature values of the dielectric constant and temperature coefficient varied from 13.5 and +125 p.p.m. ° C−1 in uncrystallized glass to 47 and −600 p.p.m. ° C−1, respectively, in glass-ceramics crystallized for 16 h at 1100° C.

Relatively low dielectric losses (tanδ=0.002 at 1 MHz) were observed in uncrystallized glass, and the dielectric losses increased with both frequency and temperature. The dielectric loss at temperatures below −50° C increased upon crystallization of SrTiO3, while the dielectric loss at ambient temperatures (and above) decreased significantly with the crystallization of hexacelsian SrAl2Si2O3. The crystallization of titania in glass-ceramics with high crystallization temperatures resulted in large low frequency, high temperature losses, due to Maxwell-Wagner-Sillars effects. In most glass and glass-ceramic samples, a temperature-independent increase of dielectric loss was observed over the frequency range of 10 to 1000 kHz from −50 to 200° C; the cause of these increased losses was not determined.

Maxima in both the dielectric constant and loss appeared at low temperatures (below −100° C), and their magnitudes increased, as the crystallization temperature or time was increased. In the early stages of crystallization, the dielectric constant maxima could be explained on the basis of dielectric mixing between perovskite SrTiO3 and the glassy matrix. However, with higher crystallization temperatures, peaks in the dielectric constant and loss were the result of ferroic effects within the SrTiO3.

Keywords

Crystallization Dielectric Constant Perovskite Strontium Dielectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Swartz, E. Breval, C. Randall andB. H. Fox,J. Mater. Sci. this issue.Google Scholar
  2. 2.
    A. Herczog,J. Amer. Ceram. Soc. 47 (1964) 107–115.Google Scholar
  3. 3.
    T. Kokubo, S. Sakka andM. Tashiro,J. Ceram. Ass. Jpn 74 (1966) 128–133.Google Scholar
  4. 4.
    T. Kokubo, C. Kung andM. Tashiro,ibid. 76 (1968) 89–93.Google Scholar
  5. 5.
    D. Hulsenberg andJ. Lehmann,Silakattechnik 34 (1983) 74–76.Google Scholar
  6. 6.
    F. W. Martin,Phys. Chem. Glasses 6 (1965) 143–146.Google Scholar
  7. 7.
    C. K. Russell andC. G. Bergeron,J. Amer. Ceram. Soc. 48 (1965) 162–163.Google Scholar
  8. 8.
    D. G. Grossman andJ. O. Isard J. Mater. Sci. 4 (1969) 1059–1063.Google Scholar
  9. 9.
    Idem, J. Amer. Ceram. Soc. 52 (1969) 230–231.Google Scholar
  10. 10.
    Idem, J. Phys. D 3 (1970) 1058–1067.Google Scholar
  11. 11.
    T. Kokubo, H. Nagao andM. Tashiro,J. Ceram. Ass. Jpn 77 (1969) 293–300.Google Scholar
  12. 12.
    T. Kokubo andM. Tashiro,J. Non-Cryst. Solids 13 (1973/1974) 328–340.Google Scholar
  13. 13.
    M. A. G. C. Van De Graaf, J. C. Lodder andA. J. Burgraaf,Glass Techn. 15 (1974) 143–147.Google Scholar
  14. 14.
    S. M. Lynch andJ. E. Shelby,J. Amer. Ceram. Soc. 67 (1984) 424–427.Google Scholar
  15. 15.
    N. F. Borelli, A. Herczog andR. D. Maurer,Appl. Phys. Lett. 7 (1965) 117–118.Google Scholar
  16. 16.
    N. F. Borelli,J. Appl. Phys. 38 (1967) 4243–4247.Google Scholar
  17. 17.
    F. Borelli andM. M. Layton,J. Non-Cryst. Solids 6 (1971) 197–212.Google Scholar
  18. 18.
    M. M. Layton andA. Herczog,J. Amer. Ceram. Soc. 50 (1967) 369–375.Google Scholar
  19. 19.
    Idem, Glass Techn. 10 (1969) 50–53.Google Scholar
  20. 20.
    W. N. Lawless,Rev. Sci. Instrum. 42 (1972) 561–566.Google Scholar
  21. 21.
    Idem, Adv. Cryogenic Eng. 16 (1971) 261–267.Google Scholar
  22. 22.
    Idem, US Patent 3649891 (1972).Google Scholar
  23. 23.
    Idem, Ferroelectrics 3 (1972) 287–293.Google Scholar
  24. 24.
    Idem, ibid. 7 (1974) 379–381.Google Scholar
  25. 25.
    M. Monneraye, J. Sinderat andC. Jouwersma,Glass Tech. 9 (1968) 70–77.Google Scholar
  26. 26.
    S. L. Swartz, M. T. Lanagan, W. A. Schulze, L. E. Cross andW. N. Lawless,Ferroelectrics 50 (1983) 313–318.Google Scholar
  27. 27.
    S. L. Swartz, PhD Thesis, The Pennsylvania State University, (1985).Google Scholar
  28. 28.
    S. L. Swartz, A. S. Bhalla, L. E. Cross andW. N. Lawless,J. Appl. Phys. 60 (1986) 2069–2080.Google Scholar
  29. 29.
    R. W. Sillars,J. Inst. Elec. Eng. 80 (1937) 378–394.Google Scholar
  30. 30.
    W. Niesel,Ann. Physik 6 (1952) 336–348.Google Scholar
  31. 31.
    S. L. Swartz andM. T. Lanagan, unpublished data.Google Scholar
  32. 32.
    Sakudo andUnoki,Phys. Rev. Lett. 26 (1971) 851–853, 1147.Google Scholar
  33. 33.
    A. E. Owen,Phys. Chem. Glasses 2 (1961) 152–162.Google Scholar
  34. 34.
    E. Gough, J. O. Isard andJ. A. Topping,ibid. 10 (1969) 89–100.Google Scholar
  35. 35.
    R. S. Prasad andJ. O. Isard,ibid. 8 (1967) 218–223.Google Scholar
  36. 36.
    V. Halpern,Physica 79B (1975) 323–349.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • S. L. Swartz
    • 1
  • A. S. Bhalla
    • 2
  • L. E. Cross
    • 2
  • W. N. Lawless
    • 3
  1. 1.Battelle Columbus DivisionColumbusUSA
  2. 2.Materials Research LaboratoryPennsylvania State UniversityUniversity ParkUSA
  3. 3.CeramPhysics Inc.WestervilleUSA

Personalised recommendations