Advertisement

Journal of Materials Science

, Volume 23, Issue 11, pp 3921–3926 | Cite as

Selective leaching of NiAl3 and Ni2Al3 intermetallics to form Raney nickels

  • M. L. Bakker
  • D. J. Young
  • M. S. Wainwright
Article

Abstract

Annealed single-phase NiAl3 and Ni2Al3 materials were leached with 20wt% aqueous NaOH solution to remove the aluminium. At temperatures of 274 to 323 K, NiAl3 leached according to linear kinetics, yielding porous nickel which was friable and disintegrated. At these temperatures Ni2Al3 was unreactive, but at 343 to 380 K it leached according to parabolic kinetics, producing a strong, tightly adherent rim of residual material. The Ni2Al3 reaction proceeded in two steps, firstly to produce a two-phase mixture of Ni2Al3 plus nickel, and secondly to produce nickel alone. In both stages the detailed microstructure of the prior alloy was preserved, implying that the mechanism is selective dissolution. The surface adsorption properties of the nickel residues were obscured by reprecipitated aluminA. However, metal crystallite size measurements showed that a large nickel surface area was potentially available.

Keywords

Nickel Ni2Al3 Selective Dissolution Raney Nickel Nickel Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Raney, US Patent, 1 563 787 (1925).Google Scholar
  2. 2.
    Idem, ibid. 1 628 191 (1926).Google Scholar
  3. 3.
    R. Sassoulas andY. Trambouze,Bull. Soc. Chim. Fr. 5 (1964) 985.Google Scholar
  4. 4.
    A. A. Presnyakov, K. T. Chernousov, T. Kabiev, A. B. Fasman andT. T. Bocharova,Zh. Prik. Khim. 40 (1967) 958.Google Scholar
  5. 5.
    J. Freel, W. J. M. Pieters andR. B. Anderson,J. Catal. 14 (1969) 247.Google Scholar
  6. 6.
    Idem, ibid. 16 (1970) 281.Google Scholar
  7. 7.
    S. D. Robertson andR. B. Anderson ibid. 41 (1976) 405.Google Scholar
  8. 8.
    D. J. Young, M. S. Wainwright andR. B. Anderson,ibid. 64 (1980) 116.Google Scholar
  9. 9.
    V. R. Choudhary andS. K. Choudhari,J. Chem. Tech. Biotech. 33A (1983) 330.Google Scholar
  10. 10.
    S. Sane, J. M. Bonnier, J. P. Damon andJ. Masson,Appl. Catal. 9 (1984) 69.Google Scholar
  11. 11.
    F. Delannay, J. P. Damon, J. Masson andB. Delmon,ibid 4 (1982) 169.Google Scholar
  12. 12.
    A. D. Tomsett, D. J. Young andM. S. Wainwright,J. Electrochem. Soc. 131 (1984) 2476.Google Scholar
  13. 13.
    N. I. Onouha, A. D. Tomsett, M. S. Wainwright andD. J. Young,J. Catal. 91 (1985) 25.Google Scholar
  14. 14.
    J. Szot, D. J. Young, A. Bourdillon andK. E. Easterling,Phil. Mag. Lett. 55 (1987) 109.Google Scholar
  15. 15.
    A. D. Tomsett, D. J. Young andM. S. Wainwright,J. Electrochem. Soc., unpublished results.Google Scholar
  16. 16.
    F. M. Nelson andF. T. Eggertsen,Anal. Chem. 30 (1958) 1387.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • M. L. Bakker
    • 1
  • D. J. Young
    • 1
  • M. S. Wainwright
    • 1
  1. 1.School of Chemical Engineering and Industrial ChemistryUniversity of New South WalesKensingtonAustralia

Personalised recommendations