Journal of Materials Science

, Volume 21, Issue 12, pp 4366–4368 | Cite as

Thermal expansion of the cubic (3C) polytype of SiC

  • Z. Li
  • R. C. Bradt


Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000° C by the X-ray diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed as the second order polynominal: α11=3.19×10−6+ 3.60×10−9T−1.68×10−12T2 (1/° C). It increases continuously from about 3.2×10−6/° C at room temperature to 5.1×10−6/° C at 1000° C, with an average value of 4.45 × 10−6/° C between room temperature and 1000° C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.


Polymer Thermal Expansion Structural Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Becker,Z. Physik 40 (1926) 37.Google Scholar
  2. 2.
    T. A. Taylor andR. M. Jones, in “Silicon Carbide, a High-Temperature Semiconductor” edited by J. R. O'Connor and J. Smiltens (Pergamon, Oxford, 1960) p. 147.Google Scholar
  3. 3.
    P. Popper andI. Mohyuddin, in “Special Ceramics 1964” edited by P. Popper (Academic Press, London, 1965) p. 45.Google Scholar
  4. 4.
    D. Clark andD. Knight, Royal Aircraft Establishment, Technical Report RAE-TR-65049, [AD464397] (1965).Google Scholar
  5. 5.
    E. L. Kern, D. W. Hamill, H. W. Deem andH. D. Sheets,Mater. Res. Bull. 4 (1969) S25.Google Scholar
  6. 6.
    R. J. Price,Bull. Amer. Ceram. Soc. 48 (1969) 859.Google Scholar
  7. 7.
    H. Suzuki, T. Iseki andM. Ito,J. Nucl. Mater. 48 (1973) 247.Google Scholar
  8. 8.
    Y. S. Touloukian (ed), in “Thermophysical Properties of Matter” Vol. 13, (IFI/Plenum, New York, 1970) p. 874.Google Scholar
  9. 9.
    Powder Diffraction File, Card No. 29-1129 (JCPDS, International Center for Diffraction Data, Swarthmore, Pennyslvania, USA).Google Scholar
  10. 10.
    J. Intrater andS. Hurwitt,Rev. Sci. Instr. 32 (1961) 905.Google Scholar
  11. 11.
    W. J. Campbell andC. Grain, U.S. Bureau of Mines, Report Investigation No. 5757 (1961).Google Scholar
  12. 12.
    Z. Li, MSc Thesis in Ceramic Engineering, University of Washington, 1986.Google Scholar
  13. 13.
    R. A. Fisher (ed), in “Statistical Methods for Research Workers” 13th edn. (Hafner, New York, 1958) p. 176.Google Scholar
  14. 14.
    F. L. Yaggee andF. G. Foote, Technical Report Argonne National Laboratory-7644 (1969).Google Scholar
  15. 15.
    D. Taylor,Trans. Brit. Ceram. Soc. 83 (1984) 5.Google Scholar
  16. 16.
    R. M. Hazen andL. M. Finger, “Comparative Crystal Chemistry” (Wiley-Interscience, New York, 1984) p. 115.Google Scholar
  17. 17.
    H. D. Megaw,Mater. Res. Bull. 6 (1971) 1071.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • Z. Li
    • 1
  • R. C. Bradt
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations