Functional Analysis and Its Applications

, Volume 15, Issue 4, pp 246–255 | Cite as

Asymptotic theory of characters of the symmetric group

  • A. M. Vershik
  • S. V. Kerov


Functional Analysis Symmetric Group Asymptotic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    O. Bratteli, "Inductive limits of finite dimensional C*-algebras," Trans. Am. Math. Soc.,171, 195–234 (1972).Google Scholar
  2. 2.
    J. C. Dixmier, C Algebras, Elsevier (1977).Google Scholar
  3. 3.
    G. A. Elliott, "On the classification of inductive limits of sequences of semisimple finite-dimensional algebras," J. Algebra,38, 29–44 (1976).Google Scholar
  4. 4.
    J. Feldman and C. C. Moore, "Ergodic equivalence relations cohomology and von Neumann algebras. I," Trans. Am. Math. Soc.,234, 289–324 (1977).Google Scholar
  5. 5.
    G. D. James, "The representation theory of the symmetric groups," Lect. Notes Math.,682 (1978).Google Scholar
  6. 6.
    D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley (1973).Google Scholar
  7. 7.
    "Combinatoire et representation du group symetrique," Lect. Notes Math.,579 (1977).Google Scholar
  8. 8.
    B. F. Logan and L. A. Shepp, "A variational problem for random Young tableaux," Adv. Math.,26, 206–222 (1977).Google Scholar
  9. 9.
    F. D. Murnaghan, Theory of Representations of Groups [Russian translation], IL, Moscow (1950).Google Scholar
  10. 10.
    G. de B. Robinson, Representation Theory of the Symmetric Group, Edinburgh Univ. Press (1961).Google Scholar
  11. 11.
    R. P. Stanley, "The Fibonacci lattice," Fibonacci Q.,13, No. 3, 215–232 (1975).Google Scholar
  12. 12.
    E. Thoma, "Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe," Math. Z.,85, 40–61 (1964).Google Scholar
  13. 13.
    A. M. Vershik, "Description of invariant measures for actions of some infinite groups," Dokl. Akad. Nauk SSSR,218, No. 4, 749–752 (1974).Google Scholar
  14. 14.
    A. M. Vershik, I. M. Gel'fand, and M. I. Graev, "Representations of the group SL(2, R), where R is a ring of functions," Usp. Mat. Nauk,28, No. 5, 83–128 (1973).Google Scholar
  15. 15.
    A. M. Vershik and S. V. Kerov, "Asymptotics of the Plancherel measure of the symmetric group and limits of Young tableaux," Dokl. Akad. Nauk SSSR,233, No. 6, 1024–1027 (1977).Google Scholar
  16. 16.
    A. M. Vershik and S. V. Kerov, "Characters and factor-representations of the infinite symmetric group," Dokl. Akad. Nauk SSSR,257, No. 5, 1037–1040 (1981).Google Scholar
  17. 17.
    S. V. Kerov and A. M. Versik, "Characters factor-representations and K-functor of the infinite symmetric group," in: Proceedings of the International Conference on Operator Algebras and Group Representations (1980).Google Scholar
  18. 18.
    S. Strătilă and D. Voiculescu, "Representations of AF-algebras and of the group U (∞)," Lect. Notes Math.,486 (1975).Google Scholar
  19. 19.
    E. G. Effros, D. E. Handelman, and Chao-Liang Shen, "Dimension groups and their affine representations," Am. J. Math.,102, 385–407 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • A. M. Vershik
  • S. V. Kerov

There are no affiliations available

Personalised recommendations