Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing

Abstract

Single phaseβ-sialon ceramics, Si6−z Al z O z N8−z , have been prepared from carefully balanced powder mixtures, also taking account of any excess oxygen in the starting materials. Sintering powder compacts in a nitrogen atmosphere (0.1 MPa) at 1800° C or higher transforms the starting mixture into aβ-sialon solid solution atz-values up to about 4.3, but the sintered material has an open porosity. Addition of 1 wt% Y2O3 to the starting mix improved the sintering behaviour somewhat and the density of the sintered compacts reached 95% of the theoretical value. By glass-encapsulated hot isostatic pressing at 1825° C, however, sintered materials of virtually theoretical density could be obtained, with or without the 1 wt% Y2O3 addition. These latter samples have been studied by X-ray diffraction and electron microscopy, and their hardness and indentation fracture toughness have been measured. It was found that the maximum extension of theβ-sialon phase composition at 1825° C and 200 MPa pressure is slightly below 4,z∼ 3.85 and about 4.1 at atmospheric pressure, and that the hexagonal unit cell parameters are linear functions of thez-value. The single-phaseβ-sialon ceramics had no residual glassy grain-boundary phase. The grain shape was equi-axed and the grain size increased from about 1μm at lowz-values to 5μm at highz-values. At lowz-values the hardness at a 98 N load was 1700 and the fracture toughness 3, whereas an increase inz above 1 caused both the hardness and fracture toughness to decrease significantly. Addition of 1 wt % Y2O3 to the starting mix prior to the HIP-sintering gave rise to a small amount of amorphous intergranular phase, changes in grain size and shape, a clear increase in fracture toughness and a moderate decrease in hardness.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. H. Jack andW. I. Wilson,Nature Phys. Sci. 238 (1972) 28.

  2. 2.

    Y. Oyama andO. Kamigaito,Jpn J. Appl. Phys. 10 (1971) 1637.

  3. 3.

    J. Briggs,Mater. Res. Bull. 12 (1977) 1047.

  4. 4.

    M. N. Rahaman, F. L. Riley andR. J. Brook,J. Mater. Sci. 16 (1981) 660.

  5. 5.

    S. Umebayashi, K. Kishi, E. Tani andK. Kobayashi,Yogyo Kyokai Shi 92 (1984) 35.

  6. 6.

    E. Tani, H. Ichinose, K. Kishi, S. Umebayashi andK. Kobayashi,ibid. 92 (1984) 675.

  7. 7.

    M. N. Rahaman, Y. Boiteux andL. C. De Jonghe,Amer. Ceram. Soc. Bull. 65 (1986) 1171.

  8. 8.

    M. H. Lewis, B. D. Powell, P. Drew, R. J. Lumby, B. North andA. J. Taylor,J. Mater. Sci. 12 (1977) 61.

  9. 9.

    Y. Miyamoto, K. Tanaka, M. Shimada andM. Koizumi, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner (Deutsche Keramische Gesellschaft, Lübeck-Travemünde, 1986) p. 271.

  10. 10.

    N. Ingelström andT. Ekström, Proceedings of International Conference on Hot Isostatic Pressing, Luleå, Sweden, 15–16 June 1987 (Centek, Sweden, 1988).

  11. 11.

    H. Larker, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus Nijhoff, The Hague, 1983) p. 717.

  12. 12.

    M. Mitomo, N. Kuramoto andH. Suzuki, Proceedings of International Symposium on Factors in Densification and Sintering of Oxides and Non-Oxide Ceramics, Japan 1978, p. 463.

  13. 13.

    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533.

  14. 14.

    C. Chatfield andH. Norström,ibid. 66 (1983) C-168.

  15. 15.

    F. K. Van Dijen, R. Metselaar, R. B. Helmholdt,J. Mater. Sci. Lett. 6 (1987) 1101.

  16. 16.

    M. A. O'Keefe, in “Electron Optical Systems for Microscopy, Microanalysis and Microlithography”, edited by J. J. Hren, F. A. Lenz, E. Munro and P. B. Sewer, 1984 (SEM Inc., Illinois, 1984).

  17. 17.

    C. Chatfield, T. Ekström andM. Mikus,J. Mater. Sci. 21 (1986) 2297.

  18. 18.

    P. O. Olsson, to be published.

  19. 19.

    S. Boskovic, L. J. Gauckler, G. Petzow andT. Y. Tien, in “Sintering Processes”, edited by G. C. Kuczynski (Plenum Press, London, 1980) p. 295.

  20. 20.

    M. N. Rahaman, F. L. Riley andR. J. Brook,J. Mater. Sci. 16 (1981) 660.

  21. 21.

    S. Bandyopadhyay andJ. Mukerji,J. Amer. Ceram. Soc. 79 (1987) C-273.

  22. 22.

    R. J. Lumby, B. North andA. Tayler,Spec. Ceramics 6 (1975) 283.

  23. 23.

    P. L. Land, J. M. Wimmer, R. W. Burns andN. S. Choudbury,J. Amer. Ceram. Soc. 61 (1978) 56.

  24. 24.

    A. Takase, S. Umebayashi andK. Kishi,J. Mater. Sci. Letters 1 (1982) 529.

  25. 25.

    A. Takase andE. Tani,ibid. 3 (1984) 1058.

  26. 26.

    JCPDS XRD-card No. 9-259 (The American Society for Testing Materials).

  27. 27.

    R. Grun,Acta Cryst. B35 (1979) 800.

  28. 28.

    M. Haviar andO. Johannesen,Adv. Ceram. Mater. 3 (1988) 405.

  29. 29.

    P. Greil andJ. Weiss,J. Mater. Sci. 17 (1982) 1571.

  30. 30.

    D. Chakraborty andJ. Mukerji,ibid. 15 (1980) 3051.

  31. 31.

    R. J. Lumby,J. Mater. Sci. Lett. 2 (1983) 345.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ekström, T., Käll, P.O., Nygren, M. et al. Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing. J Mater Sci 24, 1853–1861 (1989). https://doi.org/10.1007/BF01105715

Download citation

Keywords

  • Fracture Toughness
  • Y2O3
  • Open Porosity
  • Grain Shape
  • Sintered Material