Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structure of a global and seasonal carbon exchange model for the terrestrial biosphere the frankfurt biosphere model (FBM)


Carbon exchange fluxes of terrestrial ecosystems are expected to depend on the internal dynamics of C stocks in vegetation and soils, on nutrient availability, and on the local climatic conditions/weather. The model structure which we present focuses on the internal dynamics in the living vegetation. The mathematical description is derived from two basic hypotheses: 1) vegetation tends to maximize photosynthesizing tissue, and 2) the relative amounts of C in pools with relatively short and long turnover times are given by allometric relations. The model can be calibrated for any vegetation type in a typical climate under the condition to meet mean ecological estimates of e.g. biomass and NPP. For C cycle modeling the FBM yields the net CO2 flux between the grid elements and the atmosphere in a daily resolution. It is demonstrated that simulations with a 1°×1° spatial resolution reproduce the response of the time course of C fluxes to local climates.

This is a preview of subscription content, log in to check access.


  1. Box, E.O.: 1981,Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, The Hague, Junk.

  2. Fung, I. Y.; Tucker, C. I.; Prentice, K. C.: 1987,J. Geophys. Res. 92(D3), 2999.

  3. Heimann, M. and Keeling, C. D.: 1989, A Three Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds: Model Description and Simulated Tracer Experiments, in: D. H. Peterson (ed.),Aspects of Climate Variability in the Pacific and the Western Americas, Geophysical Monograph 55, Washington DC, pp. 237–275.

  4. Holdridge, L.R.: 1947.Science,105, 367.

  5. Janecek, A.; Benderoth, G.; Lüdeke, M. K. B.; Kindermann, J.; Kohlmaier, G. H.: 1989,Ecological Modelling 49, 101.

  6. Kohlmaier, G. H.; Bröhl, H.; Siré, E. O.; Plöchl, M.: 1987,Tellus 39B, 155.

  7. Kohlmaier, G. H.; Lüdeke, M.; Janecek, A.; Benderoth, G.: 1991, Land biota, Source or Sink of Atmospheric Carbon Dioxide, in: Schneider, S. H.; Boston, P. J. (eds.),Scientists on Gaia, MIT Press, Cambridge, pp 223–239.

  8. Matthews, E.: 1983,J. Clim. Appl. Meteor. 22(3), 474.

  9. Matthews, E.: 1984,Progress in Biometeorology 3, 237.

  10. Monsi, M. and Saeki, T.: 1953,Jap. Journ. Bot. 14, 22.

  11. Prentice, I. C.; Cramer, W.; Harrison, S. P.; Leemans, R.: 1992,J. Biogeogr. 19, 117.

  12. Reichle, D. E. (ed.): 1981,Dynamic Properties of Forest Ecosystems. International Biological Programm,23, Cambridge University Press, Cambridge.

  13. Richter, O.: 1985,Simulation des Verhaltens ökologischer Systeme. Mathematische Methoden und Modelle. VCH, Weinheim.

  14. Rodin, L. E.; Bazilevich, N. I.; Rozov, N. N.: 1972, Productivity of the World's Main Ecosystems, in:Proc. of World Ecosystems, Seattle Symp., pp. 13–26.

  15. Ryan, M. G.: 1991.Ecological Applications 1(2), 157.

  16. Schober, R.: 1975.Ertragstafeln wichtiger Baumarten, Sauerländer, Frankfurt.

  17. Shea, D. J.: 1986,Climatological Atlas: 1950–1979, NCAR Technical Note 269+STR, NCAR, Boulder, Colorado.

  18. Thornthwaite, C. W.: 1948,Geographical Review 38, 55.

  19. Wilson, M. F. and Henderson-Sellers, A.: 1985,Journal of Climatology 5, 119.

  20. Woodward, F. I.: 1987,Climate and Plant Distribution. (Cambridge Studies in Ecology). Cambridge University Press, Cambridge

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kindermann, J., Lüdeke, M.K.B., Badeck, F.-. et al. Structure of a global and seasonal carbon exchange model for the terrestrial biosphere the frankfurt biosphere model (FBM). Water Air Soil Pollut 70, 675–684 (1993). https://doi.org/10.1007/BF01105029

Download citation


  • Local Climate
  • Turnover Time
  • Carbon Exchange
  • Cycle Modeling
  • Internal Dynamic