Water, Air, and Soil Pollution

, Volume 70, Issue 1–4, pp 443–463 | Cite as

Riverine transport of atmospheric carbon: Sources, global typology and budget

  • Michel Meybeck
Part III Workshop Research Presentations Section 3: Land and Water


Atmospheric C (TAC) is continuously transported by rivers at the continents’ surface as soil dissolved and particulate organic C (DOC, POC) and dissolved inorganic C (DIC) used in rock weathering reactions. Global typology of the C export rates (g.m−2.yr−1) for 14 river classes from tundra rivers to monsoon rivers is used to calculate global TAC flux to oceans estimated to 542 Tg.yr−1, of which 37 % is as DOC, 18 % as soil POC and 45 % as DIC. TAC originates mostly from humid tropics (46 %) and temperate forest and grassland (31 %), compared to boreal forest (14 %), savannah and sub-arid regions (5 %), and tundra (4 %). Rivers also carry to oceans 80 Tg. yr−1 of POC and 137 TG.yr−1 of DIC originating from rock erosion. Permanent TAC storage on land is estimated to 52 Tg.yr−1 in lakes and 17 Tg.yr−1 in internal regions of the continents.


Boreal Forest Temperate Forest Internal Region Humid Tropic Export Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekin, O.A. and Brazhnikova, L.V.: 1960, Contribution to the Knowledge of Dissolved Matter Runoff at the Earth Surface (in Russian),Gidrochim. Mater.,32, pp. 12–34.Google Scholar
  2. Balazs, D.: 1977, The Geographical Distribution of Karst Area,Proc. 7th Int. Congress Speleology, Sheffield, pp. 13–15.Google Scholar
  3. Baumgartner, A. and Reichel, E.: 1976,The World Water Balance, Elsevier, 179 pp.Google Scholar
  4. Brinson, M.M.: 1976,Limnol. Oceano.,22, pp. 572–582.Google Scholar
  5. Cadée, G.C.: 1984,Neth. J. Sea Res.,17, pp. 426–440.Google Scholar
  6. Clarke, F.W.: 1924,Data of Geochemistry, Vth Edition, US Geol. Survey Bull.,770, 841 pp.Google Scholar
  7. Davies, B.R.: 1986, The Zambezi River, in: Davies B.R. and Walker K.F. (eds), The Ecology of River Systems, pp. 225–267.Google Scholar
  8. Degens, E.T., Kempe, S. and Richey, J.E. (eds): 1991A,Biogeochemistry of Major World Rivers, John Wiley and Sons, 356 pp.Google Scholar
  9. Degens, E.T., Kempe, S. and Richey J.E.: 1991B, Summary: Biogeochemistry of Major World Rivers, in: Degens E.T., Kempe S. and Richey J.E. (eds),Biogeochemistry of Major World Rivers, John Wiley and Sons, pp. 323–347.Google Scholar
  10. Dessery, S., Dulac, C., Laurenceau, J.M. and Meybeck, M.: 1984,Archiv. Hydrobiol.,100, pp. 235–260.Google Scholar
  11. Downing, al: 1993, this volume.Google Scholar
  12. Feng, Jian-Xiang and Kempe, S.: 1987,Mitt. Geol. Paläont. Inst. Univ. Hamburg,64, pp. 161–170.Google Scholar
  13. Ertel, J.R., Hedges, J.I., Devol, A.H., Richey, J.E. and Ribeiro, N.: 1986,Limnol. Oceanogr.,31, pp. 739–754.Google Scholar
  14. Hedges, J.I., Clark, W.A., Quay, P.D., Richey, J.E., Devol, A.H. and Santos, U. de M.: 1986,Limnol. Oceano,31, pp. 717–738.Google Scholar
  15. Holland, H.D.: 1978,The Chemistry of the Atmosphere and Oceans, Wiley- Interscience, 351 pp.Google Scholar
  16. Ittekkot, V.: 1988,Nature,332, pp. 436–438.Google Scholar
  17. Ittekkot, V. and Arain, R.: 1986,Geochim. Cosmochim. Acta,50, pp. 1643–1656.Google Scholar
  18. Kempe, S.: 1984,J. Geophys. Res.,89, pp. 4657–4676.Google Scholar
  19. Kempe, S.: 1985,Mitt. Geol. Paläont. Inst. Univ. Hamburg,52, pp. 91–332.Google Scholar
  20. Kempe, S.: 1988, Freshwater Carbon and the Weathering Cycling, in: Lerman A. and Meybeck M. (eds),Physical and Chemical Weathering in Geochemical Cycles, KluwerAcad. Publ., pp. 197–224.Google Scholar
  21. Kempe, S., Pettine, M. and Cauwet, G.: 1991, Biogeochemistry of European Rivers, in Degens E.T., Kempe S. and Richey J.E. (eds),Biogeochemistry of World Rivers, John Wiley and Sons, pp. 169–212.Google Scholar
  22. Kortelainen, P. and Mannio, J.: 1988,Water, Air and Soil Poll.,42, pp. 341–352.Google Scholar
  23. Lesack, L.F.W., Hecky, R.E. and Melack, J.H.: 1984,Limnol. Ocean,29, pp. 816–830.Google Scholar
  24. Lewis, W.M. and Saunders, J.F.: 1989,Biogeochemistry,7, pp. 203–240.Google Scholar
  25. Livingstone, D.A.: 1963,Chemical Composition of Rivers and Lakes, in Data of Geochemistry,US Geol. Survey Prof. Paper,440 G, 64 pp.Google Scholar
  26. Malcolm, R.L. and Durum, W.H.: 1976,Organic Carbon and Nitrogen Concentration and Annual Organic Carbon Load in Six Selected Rivers of the USA, US Geol. Survey Water Supply Paper,1817, 21 pp.Google Scholar
  27. Martins, O. and Probst, J.L.: 1991, Biogeochemistry of Major African Rivers: Carbon and Mineral Transport, in Degens E.T., Kempe S. and Richey J.E. (eds),Biogeochemistry of Major World Rivers, John Wiley and Sons, pp. 127–155.Google Scholar
  28. Meybeck, M.: 1979,Rev. Géographie Physique Géologie Dynamique,21, pp. 215–246.Google Scholar
  29. Meybeck, M.: 1981, River Transport of Organic Carbon to the Ocean, inFlux of Organic Carbon by Rivers to the Ocean, CONF 8009140, US, Dept. of Energy, Office Energy Res., Washington DC, pp. 219–269.Google Scholar
  30. Meybeck, M.: 1982,Amer. J. Sci.,282, pp. 401–450.Google Scholar
  31. Meybeck, M.: 1987,Amer. J. Sci.,287, pp. 401–428.Google Scholar
  32. Meybeck, M.: 1988, How to Establish and Use World Budgets of River Material, in Lerman A. and Meybeck M. (eds),Physical and Chemical Weathering in Geochemical Cycles, Kluwer Acad. Publ., pp. 247–272.Google Scholar
  33. Meybeck, M.: 1993, C, N, P and S in Rivers: from Sources to Global Inputs, in Wollast R., Mackenzie F.T. and Chou L. (eds),Interaction of C, N, P and S Biogeochemical Cycles and Global Change, Springer-Verlag, pp. 163–193.Google Scholar
  34. Milliman, J.D. and Meade, R.H.: 1983,J. Geol.,91, pp. 1–21.Google Scholar
  35. Milliman, J.D., Quinchun, X. and Zuosheng, Y.: 1984,Am. J. Sci.,284, pp. 824–834.Google Scholar
  36. Moore, T.R.: 1987,Int. Ass. Hydrol. Sci. Publ.,167, pp. 481–487.Google Scholar
  37. Mulholland, P.J. and Elwood, J.W.: 1982,Tellus,34, pp. 490–499.Google Scholar
  38. Mulholland, P.J., Dahm, C.N., David, M.B., Ditoro, D.M., Fisher, T.R., Hemond, H.F., Kögel-Knabner, I., Meybeck, M., Meyer, J.L. and Sedell J.R.: 1990, What are the Temporal and Spatial Variations of the Organic Acids at the Ecosystem Level ?, in: Perdue M. and Gjessiky E.T. (eds),Organic Acids in Aquatic Ecosystems, Dahlem Workshop Rpt, John Wiley, pp. 315–329.Google Scholar
  39. Naiman, R.J., Melillo, J.M., Lock, M.A., Ford, T.E. and Reice S.R.: 1987,Ecology,68, pp. 1139–1156.Google Scholar
  40. Pardé, M.: 1953,Revue Géographie Alpine,41, pp. 399–421.Google Scholar
  41. Ronov, A.B.: 1976,Geochem. Int.,13, pp. 172–195.Google Scholar
  42. Schlesinger, W.H. and Melack, J.M.: 1981,Tellus,33, pp. 172–187.Google Scholar
  43. Soviet Physical Geography Atlas of the World: 1964, Nauka, Moscow.Google Scholar
  44. Spitzy, A. and Leenheer, J.: 1991, Dissolved Organic Carbon in Rivers, in Degens E.T., Kempe S. and Richey J.E. (eds),Biogeochemistry of World Major Rivers, John Wiley and Sons, pp. 213–232.Google Scholar
  45. Stallard, R.F. and Edmond, J.M.: 1983,J. Geoph. Res.,88, pp. 9671–9688.Google Scholar
  46. Wollast, R. and Mackenzie, F.T.: 1983, The Global Cycle of Silica, in: Aston S. (ed),Silicon Geochemistry and Biogeochemistry, Academic Press London, pp. 39–76.Google Scholar
  47. Zhang, S., Gan, W.B. and Ittekkot, V.: 1992,Mar. Chem.,38, pp. 53–68.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Michel Meybeck
    • 1
  1. 1.Laboratoire de Géologie AppliquéeC.N.R.S.Place JussieuParis Cedex 05France

Personalised recommendations