Water, Air, and Soil Pollution

, Volume 70, Issue 1–4, pp 39–53 | Cite as

Boreal forests and tundra

  • M. J. Apps
  • W. A. Kurz
  • R. J. Luxmoore
  • L. O. Nilsson
  • R. A. Sedjo
  • R. Schmidt
  • L. G. Simpson
  • T. S. Vinson
Part II Workshop Working Group Papers

Abstract

The circumpolar boreal biomes coverca. 2 109 ha of the northern hemisphere and containca. 800 Pg C in biomass, detritus, soil, and peat C pools. Current estimates indicate that the biomes are presently a net C sink of 0.54 Pg C yr−1. Biomass, detritus and soil of forest ecosystems (includingca. 419 Pg peat) containca. 709 Pg C and sequester an estimated 0.7 Pg C yr−1. Tundra and polar regions store 60–100 Pg C and may recently have become a net source of 0.17 Pg C yr−1. Forest product C pools, including landfill C derived from forest biomass, store less than 3 Pg C but increase by 0.06 Pg C yr−1. The mechanisms responsible for the present boreal forest net sink are believed to be continuing responses to past changes in the environment, notably recovery from the little ice-age, changes in forest disturbance regimes, and in some regions, nutrient inputs from air pollution. Even in the absence of climate change, the C sink strength will likely be reduced and the biome could switch to a C source. The transient response of terrestrial C storage to climate change over the next century will likely be accompanied by large C exchanges with the atmosphere, although the long-term (equilibrium) changes in terrestrial C storage in future vegetation complexes remains uncertain. This transient response results from the interaction of many (often non-linear) processes whose impacts on future C cycles remain poorly quantified. Only a small part of the boreal biome is directly affected by forest management and options for mitigating climate change impacts on C storage are therefore limited but the potential for accelerating the atmospheric C release are high.

Keywords

Biomass Detritus Boreal Forest Climate Change Impact Transient Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J.M., Faure H., Faure-Denard L., McGlade J.M. and Woodward F.I.:1990,Nature,348, 711.Google Scholar
  2. Apps M.J.: 1993,World Resource Review,5, 41.Google Scholar
  3. Apps M.J. and Kurz W.A.:1991.World Resource Review,3, 333.Google Scholar
  4. Birdsey R.A., 1992; Carbon Storage and Accumulation in US Forest Ecosystems,General Technical Report WO-59, USDA Forest Service, Washington, D.C., 51 pg.Google Scholar
  5. Davis, M.B.: 1969,Ecology,50, 312.Google Scholar
  6. Gignac L.D., Vitt D.H., Zoltai S.C., Bayley S.E.: 1991,Nova Hedwigia,51, 27.Google Scholar
  7. Gorham E.: 1991,Ecological Applications,1, 182.Google Scholar
  8. Graumlich L.: 1991,Ecology,72, 1.Google Scholar
  9. Holling C.S.: 1992,Ecological Monographs,62, 447.Google Scholar
  10. Kauppi P.E., Mielikäinen K., Kuusela K.: 1992,Science,256, 70.Google Scholar
  11. Kivinen E. and Pakarinen P.;1981,Annales Acad. Scientiarium Fennicae A.III.123:1–28.Google Scholar
  12. King G.A. and Nielson R.P.: 1992,Water, Air and Soil Pollution,64, 365.Google Scholar
  13. Kolchugina T. P. and Vinson T. S.: 1993,Permafrost and Peraglacial Processes,4, 13.Google Scholar
  14. Kurz W.A., Apps M.J., Webb T., and MacNamee P.: 1992, The Carbon Budget of the Canadian Forest Sector: Phase 1,ENFOR Information Report NOR-X-326, Forestry Canada Northwest Region, Edmonton, Alberta, 93 pg.Google Scholar
  15. Nielson R.P., Lenihan J., and King G.A.: 1993, Global Biogeography and Biosphere Feedback During Climatic Change, in: Kanninen M. (ed),Carbon balance of world's forested ecosystems: towards a global assessment, Proceedings of Intergovernmental Panel on Climate Change Workshop, Joensuu, Finland, 11–15 May 1992, Publications of the Academy of Finland (in press).Google Scholar
  16. Oechel W.C., Hastings S.J., Vourlitis G., Jenkins M., Riechers G., Grulke N.: 1993,Nature,361, 520.Google Scholar
  17. Prentice I.C., Sykes M.T., Lautenschlager M., Harrison S.P., Denisenko O., and Bartlein P.J.: 1993,Biogeographical Letters, (in press).Google Scholar
  18. Prentice K.C. and Fung I.Y.: 1990,Nature,346, 48.Google Scholar
  19. Schlesinger W.H.: 1990,Nature,348, 228.Google Scholar
  20. Shaver G.R., Billings D.W., Chapin III F.S., Giblin A.B., Nadelhoffer K.J., Oechel W.C., and Rastetter E.B.: 1992,BioScience,42, 433.Google Scholar
  21. Sinitsin, A.: 1990,Forest Management,8, 6.Google Scholar
  22. Smith T.M. and Shugart H.H.: 1993,Nature,361, 523.Google Scholar
  23. Townsend A.R., Vitousek P.M. and Holland E.A.: 1993,Climatic Change,22, 293.Google Scholar
  24. UN-ECE/FAO: 1992, The forest resources of the temperate zones: major findings, United Nations Economic Commission for Europe, Geneva, 32 pg.Google Scholar
  25. Vitousek P.M.: 1991,J. Environ. Qual,20, 348.Google Scholar
  26. Wullschleger S.D., Post W.M., and King A.W.: 1993, On the Potential for a CO2 Fertilization Effect in Forest Trees — An Assessment of 58 Controlled-Exposure Studies and Estimates of the Biotic Growth Factor, in: Woodwell G.M. (ed)Biospheric Feedbacks in the Global Climate System: Will the Warming Speed the Warming?, Oxford University Press (in press).Google Scholar
  27. Zoltai S.C.: 1991,Holocene,1, 68.Google Scholar
  28. Zoltai S.C.: 1993a,Arctic and Alpine Research, (in press).Google Scholar
  29. Zoltai S.C.: 1993b,5th International Mire Conservation Group Excursion Guide, Swiss Federal Institute of Forestry Snow and Landscape Research, (in press)Google Scholar
  30. Zoltai S.C. and Vitt D.H.: 1990,Quaternary Research 33, 231.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. J. Apps
  • W. A. Kurz
  • R. J. Luxmoore
  • L. O. Nilsson
  • R. A. Sedjo
  • R. Schmidt
  • L. G. Simpson
  • T. S. Vinson

There are no affiliations available

Personalised recommendations