Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Brillouin zones and the geometry of numbers


It is shown in the paper that Brillouin zones (which originally appeared in the quantum theory of solids) possess a number of remarkable, purely geometrical and arithmetical properties. In their terms, problems in the geometry of numbers concerning the best packing and covering of circles and balls by fundamental domains of lattices can be solved. The geometry of Brillouin zones is found to be also closely connected with the classical number-theoretical problems concerning the number of lattice points in a circle and a ball.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. Brillouin, Quantum Statistics [Russian translation], Kharkov (1934).

  2. 2.

    L. Brillouin and M. Parodi, Wave Propagation in Periodic Structures [Russian translation], Moscow (1959).

  3. 3.

    I. M. Vinogradov, Special Variants of the Method of Trigonometrical Sums [in Russian], Moscow (1979).

  4. 4.

    G. F. Voronoi, “The investigation of primitive parallelohedra,” in: Collected Works, [in Russian], Vol. 2, Kiev (1952), pp. 239–368.

  5. 5.

    B. N. Delone, “The geometry of positive quadratic forms I, II,” Usp. Mat. Nauk, Issue III, 16–62 (1937); Issue IV, 102–164 (1938).

  6. 6.

    B. N. Delone, The Peterburg School of Number Theory [in Russian], Moscow-Leningrad (1947).

  7. 7.

    H. Jones, Theory of Brillouin Zones and Electronic States in Crystals, Elsevier (1975).

  8. 8.

    J. W. Cassels, Introduction to the Geometry of Numbers, 2nd edn., Springer-Verlag (1971).

  9. 9.

    M. M. Skriganov, “General properties of the spectrum of differential and pseudodifferential operators with periodic coefficients and some problems of the geometry of numbers,” Dokl. Akad. Nauk SSSR,256, No. 1, 47–51 (1981).

  10. 10.

    M. M. Skriganov, “Geometrical and arithmetical methods in the spectral theory of multi-dimensional periodic operators,” Tr. Mat. Inst. AN SSSR,171, 1984.

  11. 11.

    Jing-run Chen, “The lattice points in a circle,” Chinese Math.,4, No. 2, 322–339 (1963).

  12. 12.

    L. Bieberbach, “Über die Inhaltsgleichheit der Brillouinschen Zonen,” Monatshefte für Math. Phys.,48, 509–515 (1939).

  13. 13.

    L. Brillouin, Wave Propagation in Periodic Structures, Electric Filters and Crystal Lattices (1946).

  14. 14.

    G. S. Herz, “On the number of lattice points in a convex set,” Am. J. Math.,84, No. 1, 126–133 (1962).

  15. 15.

    E. Hlawka, “Über Integrale auf konvexen Körpern I.,” Monatshefte Math.,54, No. 1, 1–36 (1950).

  16. 16.

    V. Jarnik, “Über Gitterpunkte in mehrdimensionalen Ellipsoiden,” Math. Ann.,100, 699–721 (1928).

  17. 17.

    D. J. Kendall, “On the number of lattice points inside a random oval,” Q. J. Math.,19, 1–26 (1948).

  18. 18.

    E. Landau, Vorlesungen uber Zahlentheorie, Vol. 2, Hirzel Verlag, Leipzig (1927).

  19. 19.

    C. G. Lekkerkerker, Geometry of Numbers (1969).

  20. 20.

    L. J. Mordell, “The minimum of an inhomogeneous quadratic polynomial in n variables,” Math. Zeit.,63, 525–528 (1956).

Download references

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 134, pp. 206–225, 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skriganov, M.M. Brillouin zones and the geometry of numbers. J Math Sci 36, 140–154 (1987).

Download citation


  • Quantum Theory
  • Lattice Point
  • Brillouin Zone
  • Fundamental Domain
  • Good Packing